5宁博海洋学研究所,宁波315832,中国在这项工作中,作者提出了一种新型策略,以通过Nano-Graphene空心球从Prussian Blue Analogue CO(CO 3 [CO(CN)6] 2。使用低成本材料的单锅溶液方法设计用于通过不同温度和前体的HCl蚀刻步骤进行退火来合成阴极。这使该前体制造的Li -S电池感到惊讶,表现出了显着的电荷 - 均电稳定性(570.4 mA H G -1(以1C电流密度为1C)和出色的速率性能(1145.5,717.9,672.5 ma Hg -1 in 0.1,1.0,2.0 Ag -1.0,2.0 Ag -1 ag -1 ag -1 ag -1 restive dys crespenty d pertive of。结果表明,稳定的三维多层空心球结构减轻了硫的体积膨胀,这对多硫化物的吸附产生了重大影响,并抑制了“穿梭效应”。此外,在这种结构中,氮的丰富掺杂产生了许多缺陷和活性位点,从而改善了多硫化物的界面吸附。这是CO 3 [CO(CN)6] 2的富有想象力的应用,充当Li-S电池的阴极材料,该材料提供了一种独特的材料设计方法,可以实现用于Li-S电池的硫阴极的高性能。
然而,在实现基于LLZ的ASSB的主要挑战中,具有促进电池操作的属性的阴极/LLZ界面形成,例如低界面电阻和良好的接触。因此,LLZ的densi cation采用了高于1000°C的温度下的犯罪策略,以增强其对LI金属的离子电导率和稳定性。然而,这种高温犯罪不可避免地会导致形成高电阻的电极/LLZ相间,从而导致电池较差。12,13可以通过两条路线形成阴极/LLZ接口。在第一个路径中,涉及将阴极层涂在烧结的LLZ磁盘上,LLZ在升高的温度下呈密密度密度,然后使用诸如筛网印刷和浸入等方法与阴极层涂层,并且所得的PORTODE/LLZ系统是在低温到
由于其容量相对较高和能量密度而受到青睐。2同时,优势以较低的安全性和材料稳定性为代价。3具有较高的镍含量,这些材料可在结构劣化,氧气进化和电解质氧化的电势下运行,这些过程需要缓解以提供长期稳定电池。4但是,对劣化趋势的研究和理解正在挑战,因为它们不仅取决于材料的化学5(例如,Ni富含氧化物中的Ni含量,例如Lini X Mn Y Co Z O 2(NMC)和Lini X Co Y Al Z O 2(NCA),6种掺杂型,7,8和组成梯度9),也是在循环条件上,例如电荷状态(SOC)窗口,压力,压力,自行车速率等,10 - 12
¹Univ. Grenoble Alpes,CNRS,Grenoble INP*,G2Elab,Grenoble,38031,法国 *francis.boakye-mensah@g2elab.grenoble-inp.fr 摘要 - 为了在气候变化法规日益严格的情况下找到 SF 6 的可行替代品,应该对压缩空气等替代品进行适当的评估。对于中压应用,耐受电压被用作尺寸标准,这取决于流光的引发和传播,而流光是电击穿的前兆。为了优化设计,应该通过预测模型从实验和数值上彻底研究在不同应力、压力等条件下此类放电的引发和传播机制。到目前为止,大多数数值研究都是通过自制代码完成的,因为由于此类计算的复杂性和非线性,商业软件中不易获得流光模型。最近,随着商业有限元软件COMSOL™Multiphysics 等离子体模块稳健性的增强,可以开发具有合理精度的流光放电模型。
图 3. 使用再锂化方法直接回收 LIB 阴极。(a)电池循环过程中阴极表面退化的示意图。(b)废阴极中再锂化的图示。(c)废 LiCoO 2 、NCM111 和 NCM523 阴极材料在水热再锂化和短暂退火之前和之后的电化学性能数据。
使用小型卫星进行低成本空间应用,高分辨率的地球观察,电磁波(X射线,红外线等)的观察器,从天体物体发出的电磁波(X射线,红外线等),甚至是从重力波的观察到。这些任务的推进系统要求包括较大的脉冲和功耗的全部冲动,高响应速度,3位数字投掷范围和低推力噪声。1)以低推进剂和功耗的大量总脉冲,具有发射阴极的离子元素适合作为主要推进系统。对于小型卫星应用,2)功耗是一个重要因素。是电子源的吸引力候选者,因为它的功耗低于传统的阴极(例如空心阴极,微波炉放电阴极或射电频率放电阴极),并且不构成推动力。 它也不涉及容易产生故障的部件,例如阀门和质量流控制器。 电流密度是电子源的吸引力候选者,因为它的功耗低于传统的阴极(例如空心阴极,微波炉放电阴极或射电频率放电阴极),并且不构成推动力。它也不涉及容易产生故障的部件,例如阀门和质量流控制器。电流密度
锂离子电池行业刚刚起步,可以追溯到 20 世纪 90 年代初,当时只有一种商业化的阴极化学物质,即锂钴氧化物 (LCO)。阴极可以说是电池中最重要的组成部分,因为所有能量(以 Wh/kg 为单位)都来自阴极。所有其他主要成分(阳极、隔膜、电解质和粘合剂)都是促成因素,不会影响电池的容量。LCO 投入商业使用几年后,锂镍钴铝氧化物 (NCA) 出现了。NCA 的结构在许多方面与 LCO 相似;这种成分使 NCA 的重量容量高于 LCO。目前最先进的高容量阴极材料除了镍和钴 (NMC) 外,还含有锰,并且 NMC 有不同等级,镍含量也不同。值得注意的是,即使经过三十年的发展,阴极材料的结构与原始的 LCO 并没有太大不同。随着时间的推移,我们不断调整阴极化学,不断改进。唯一的例外是磷酸铁锂
摘要 电子束 (e-beam) 产生的等离子体在施加交叉电场和磁场 (E × B) 的情况下有望用于低损伤材料处理,并应用于微电子和量子信息系统。在圆柱形电子束 E × B 等离子体中,电子和离子的径向约束分别通过轴向磁场和径向电场实现。为了控制电子的轴向约束,这种电子束产生的等离子体源可能包含一个称为反阴极的导电边界,该边界位于等离子体与阴极轴向相对的一侧。在这项工作中,结果表明,改变反阴极电压偏置可以控制反阴极收集或排斥入射电子的程度,从而可以控制热电子(电子能量在 10-30 eV 范围内)和束电子群约束。有人提出,反阴极偏压对这些不同电子群形成的影响也与弱湍流和强朗缪尔湍流之间的转变有关。
在此,采用基于工业溶剂分馏的 LignoBoost 牛皮纸木质素 (KL) 的二元阴极界面层 (CIL) 策略来制造有机太阳能电池 (OSC)。KL 中均匀分布的苯酚部分使其能够与常用的 CIL 材料(即浴铜灵 (BCP) 和 PFN-Br)轻松形成氢键,从而产生具有可调功函数 (WF) 的二元 CIL。这项工作表明,二元 CIL 在具有大 KL 比兼容性的 OSC 中工作良好,在最先进的 OSC 中表现出与传统 CIL 相当甚至更高的效率。此外,由于 KL 阻断了 BCP 和非富勒烯受体 (NFA) 之间的反应,KL 和 BCP 的组合显著提高了 OSC 的稳定性。这项工作提供了一种简单有效的方法,通过使用木质材料实现具有更好稳定性和可持续性的高效 OSC。
摘要:受到磷酸锂(Lifepo 4)的巨大成功的鼓励,类似的Nafepo 4被预测显示出与LifePo 4相同的特性。使用具有钙化温度的变化和起始材料作为Na 2 Co 3和NaCl的来源的SOL-GEL方法,在Maricite相中的Nafepo 4材料合成。根据X射线衍射法(XRD)表征,所得的Nafepo 4 maricite相具有40%至85%的纯度。通过扫描电子显微镜(SEM)观察到的样品中颗粒的形态和晶粒大小倾向于在较高温度下钙化时增大。钙化温度的增加增加了样品中的Nafepo 4 Maricite相。阻抗数据分析表明,使用Na 2 CO 3的Na +离子的扩散系数和样品的电导率高于NaCl。这项全面的研究提供了一种可行的方法,并为连续研究NA-ON电池开辟了新的机会。