(c) 不同 PTG/Cas9 载体诱导的编辑效率。(d) PTG/Cas9 系统在安留甜橙中诱导的表型。(ef) 安留甜橙定点突变的 Sanger 测序。与 WT(野生型)相比,CsPDS 的 DNA 序列中显示的是核苷酸突变。绿色序列代表 gRNA,蓝色表示 PAM 位点。删除的核苷酸以黑点表示。插入的核苷酸以红色表示。(g) 用作嫁接接穗的转基因株系。(h) 嫁接砧木的准备。(ij) 将 V 形接穗嫁接到准备好的甜橙上
阴燃火灾的特点是会产生早期气体排放,其中可能包括由于热解或热降解而产生的高浓度 CO 和挥发性有机化合物 (VOC)。如今,独立的 CO 传感器、烟雾探测器或两者的组合是火灾报警系统的标准组件。虽然气体传感器阵列与模式识别技术相结合是早期火灾探测的宝贵替代方案,但在实践中它们存在某些缺点 - 它们可以检测到早期气体排放,但对干扰的免疫力较低,并且传感器时间漂移可能导致校准模型过时。在这项工作中,我们探索了气体传感器阵列在检测阴燃和塑料火灾的同时确保拒绝一系列干扰的性能。我们在经过验证的标准火灾室(240 立方米)中进行了各种火灾和干扰实验。使用 PLS-DA 和 SVM,我们评估了不同多元校准模型对该数据集的性能。我们表明校准模型在几个月后仍然具有预测性,但并未达到完美的性能。例如,校准 4 个月后,PLS-DA 模型提供 100% 特异性和 85% 灵敏度,因为该系统难以检测塑料火灾,其特征接近于干扰场景。尽管如此,我们的结果表明,基于气体传感器阵列的系统能够比传统的基于烟雾的火灾报警系统提供更快的火灾报警响应。我们还建议使用
图 4 全头部 OPM 和混合 OPM/EEG 设计。(a – d)OPM 和混合 OPM/EEG 系统的误差指标与所考虑的头皮磁力仪数量的关系。两个系统的 r 95 的中值和最大值均与市售阵列(不同颜色)相对应的指标一起显示,这些指标是恒定的并且与 OPM 的数量无关。(e – g)仅 OPM(e)、混合 OPM/EEG(f)和完整 OPM ABC 160(g)阵列的等效不确定半径的空间分布,前两个阵列采用 100 个头皮磁力仪。(h – i)所有源的等效不确定半径的归一化直方图,采用线性(h)和半对数(i)尺度。(j)三个系统的 r 95 平均值与源深度的关系(每 5 毫米分箱一次)。 (k – l)最佳混合 OPM/EEG 阵列传感器位置(k)和布局(l)。EEG 电极和 OPM 分别用蓝点和红点表示
SARS-COV-2 DELTA变体及其sublineages(B.1.617.2,ay.1,Ay.2,Ay.3; [1])可以引起高病毒载荷,高度可传播,并且包含赋予部分免疫逃生的突变[2,3]。使用来自单个大型合同实验室的PCR阈值周期(CT)数据,我们表明美国威斯康星州的个人在鼻拭子中具有类似的病毒载荷,无论疫苗状态如何,在较高且越来越多的Delta变体患病率的时期。感染性SARS-COV-2,来自接种疫苗和未接种疫苗的人的CT <25,这表明大多数CT值在此范围内具有CT值(Wilson 95%CI 83%-97%),损坏了感染性病毒。值得注意的是,尽管接种疫苗接种测试阳性,但有68%的人在测试时至少有8名无症状的人,其中包括至少8个。我们的数据证实了感染三角洲变体的接种个体可能有可能向他人传输SARS-COV-2的想法。接种疫苗的人应继续在室内和聚集环境中佩戴脸部覆盖物,同时,如果暴露或经历类似于共证的症状,也应对SARS-COV-2进行测试。
图 4 全头部 OPM 和混合 OPM/EEG 设计。(a – d)OPM 和混合 OPM/EEG 系统的误差指标与所考虑的头皮磁力仪数量的关系。两个系统的 r 95 的中值和最大值均与市售阵列(不同颜色)相对应的指标一起显示,这些指标是恒定的并且与 OPM 的数量无关。(e – g)仅 OPM(e)、混合 OPM/EEG(f)和完整 OPM ABC 160(g)阵列的等效不确定半径的空间分布,前两个阵列采用 100 个头皮磁力仪。(h – i)所有源的等效不确定半径的归一化直方图,采用线性(h)和半对数(i)尺度。(j)三个系统的 r 95 平均值与源深度的关系(每 5 毫米分箱一次)。 (k – l)最佳混合 OPM/EEG 阵列传感器位置(k)和布局(l)。EEG 电极和 OPM 分别用蓝点和红点表示
b'摘要 提出了一种毫米波\xe2\x80\x90 低\xe2\x80\x90 轮廓宽带微带天线。为了加宽阻抗带宽并同时实现稳定的大增益,在由同轴探针馈电的微带贴片两侧布置共面寄生贴片阵列。在微带贴片上蚀刻双槽以降低 H \xe2\x80\x90 平面交叉\xe2\x80\x90 极化水平。提出了使用 Floquet \xe2\x80\x90 端口模型进行零\xe2\x80\x90 相位\xe2\x80\x90 反射分析以预测寄生贴片阵列的谐振频率。根据理想探针的输入阻抗来验证激发的谐振模式。依次激励两个相邻的宽边谐振,分别以微带贴片的准 \xe2\x80\x90 TM 10 模式和寄生贴片阵列的准 \xe2\x80\x90 TM 30 模式为主导。所提出的天线尺寸为 1.06 1.06 0.024 \xce\xbb 0 3(\xce\xbb 0 为自由空间中 29 GHz 的波长),在 | S 11 | \xe2\x89\xa4 10 dB 时实现 15%(27\xe2\x80\x93 31.35 GHz)的阻抗带宽。实现的峰值增益高达 9.26 dBi,2 \xe2\x80\x90 dB 增益带宽为 15.7%。 H \xe2\x80\x90 平面交叉 \xe2\x80\x90 极化水平在 3 \xe2\x80\x90 dB 波束宽度内小于 14 dB,背部辐射水平小于 17.9 dB。'
本文介绍了用于空间数据链路应用的 GaAs 行波电光调制器阵列的设计注意事项。调制器设计的核心是低损耗折叠光学配置,可在设备的一端提供直接的直线射频 (RF) 接入,而所有光纤端口均位于另一端。此配置是多通道应用所需的密集单片调制器阵列的关键推动因素。它还可以实现更紧凑的封装、改进的光纤处理,并通过消除 RF 馈电装置中的方向变化来实现高调制带宽和低纹波。单个 Mach-Zehnder (MZ) 和单片双并行 (IQ) 调制器都已评估高达 70 GHz,带宽约为 50 GHz,低频开/关电压摆幅 (V π ) 为 4.6 V(电压长度乘积为 8.3 Vcm)。折叠式设备比传统的“直线式”调制器要紧凑得多,而适度的设备阵列(例如 × 4)可以容纳在与单个调制器尺寸相似的封装中。讨论了独立寻址 MZ 调制器单片阵列(每个都有自己的输入光纤)的设计考虑因素,并提出了实用配置。
在这项工作中,我们报告了一种新颖的技术,用于直径小于30 nm的纳米木制造技术,其长宽比大于20,而制造面积不受限制。更重要的是,可以同时制造具有多个直径的纳米柱。在我们的技术中,图案是由电子束光刻(EBL)编写的,在离子耦合等离子体(ICP)蚀刻期间,铬(Cr)lm被沉积为硬膜。在Cr边缘发生的天线效应会导致较小的硬面膜,因此随后可以形成直径较小的纳米膜。由于我们的技术独立于底物材料,因此它也可以应用于其他半导体材料,从而在许多领域中提供了有希望的应用。此外,还提供了基于本文中制造的纳米阵列的SERS模拟,以揭示拉曼频谱强度增强的起源。
摘要 CRISPR-Cas 免疫系统的一个标志是 CRISPR 阵列,这是一种由短重复序列(“重复”)和短可变序列(“间隔区”)组成的基因组位点。CRISPR 阵列被转录并加工成单个 CRISPR RNA,每个 RNA 都包含一个间隔区,并将 Cas 蛋白引导至入侵核酸中的互补序列。大多数细菌 CRISPR 阵列转录本对于未翻译 RNA 来说异常长,这表明存在通过 Rho 防止过早转录终止的机制,Rho 是一种保守的细菌转录终止因子,可快速终止未翻译 RNA。我们表明 Rho 可以过早终止细菌 CRISPR 阵列的转录,并且我们确定了一种广泛的抗终止机制,该机制可拮抗 Rho 以促进 CRISPR 阵列的完全转录。因此,我们的数据强调了转录终止和抗终止在细菌 CRISPR-Cas 系统进化中的重要性。
摘要 人工神经网络等受大脑启发的计算概念已成为经典冯·诺依曼计算机架构的有前途的替代品。光子神经网络的目标是在光子基底中实现神经元、网络连接和潜在学习。本文,我们报告了通过高质量垂直腔面发射激光器 (VCSEL) 阵列开发快速、节能的光子神经元纳米光子硬件平台。开发的 5 × 5 VCSEL 阵列通过均匀制造结合对激光波长的单独控制提供高光学注入锁定效率。注入锁定对于基于 VCSEL 的光子神经元中信息的可靠处理至关重要,我们通过注入锁定测量和电流诱导光谱微调证明了 VCSEL 阵列的适用性。我们发现我们研究的阵列可以轻松调整到所需的光谱均匀性,因此表明基于我们技术的 VCSEL 阵列可以作为下一代光子神经网络的高能效和超快光子神经元。结合完全并行的光子网络,我们的基板有望实现达到10 GHz 带宽的超快速操作,并且我们表明,基于我们的激光器的单一非线性变换每个 VCSEL 仅消耗约 100 fJ,与其他平台相比,具有很强的竞争力。