对过去 20 年的数据进行分析发现,泰国出口部门的疲软源于国内因素。宏观数据显示,泰国出口部门在推动泰国经济增长方面发挥的作用较小,出口增长本身也在下降。泰国出口的平均增长率从 2001-2011 年的 12% 下降到 2012-2023 年的 2.2%。与此同时,泰国出口在全球市场的市场份额在 7 年期间(2015-2022 年)仅增加了 0.05 个百分点,与该地区其他国家相比,这是一个非常小的增长。恒定市场份额分析 (CMSA) 旨在辨别影响出口份额的因素,结果发现泰国出口面临的问题来自 (1) 出口全球市场需求下降(即产品效应为负)的商品,例如硬盘驱动器 (HDD)、纺织品和服装,占总出口的 7%
数量,例如直接和间接效应,具有后处理后的调节效应,从而在流行的参数条件下扩大了识别工具箱。
根据Rueda(2008)的说法,网络文化允许对第三世界社会进行转变,并基于权力,集体的社会行动和审美经验。 div>chauvel(2019)强调,诺伯特·维纳(Norbert Wiener)介绍了这一概念,该概念已在多个阶段进化:90年代的第一个概念,重点是技术;第二个直到2019年,重点关注虚拟社区;以及当前的关键阶段,它解决了社交网络的影响。 div>
等效附加系数 (-) CAPPSUM[capp(i)*sapp(i)]/SUM[sapp(i)] 轴支架 : capp(i) 3.0 尾鳍 : capp(i) 1.5-2.0 支柱凸台 : capp)i) 3.0 船体凸台 : capp(i)= 2.0 轴 : capp(i) 2.0-4.0 稳定鳍 : capp(i) 2.8 圆顶 : capp(i)= 2.7 舭龙骨 : capp(i) 1.4 CAPP 球鼻艏横截面积 (m2) ABULB 球鼻艏横截面积质心至龙骨 (m) HBULB 艏侧推器隧道直径 (m) 艏侧推器数量 : DBTTDBTT*sqrt(N) ..DBTT 船首侧推器隧道阻力系数 船首圆柱形部分的推进器:CBTT-0.003 最差位置的推进器:CBTT-0.012 CBTT 浸没横梁面积(m2) AT 运行长度(m)(如果未知 SLR-0)。。SLR 水线入口角(如果。未知 0 度)--ALFA 螺旋桨数量:0-2,如果<>0 计算。W、T、RRE NPROP
https://orcid.org/0000-0003-1181-6411 马拉尼昂联邦大学 (UFMA),巴西圣路易斯 心血管运动适应实验室 - LACORE (UFMA),巴西圣路易斯 圣卢西亚学院教授 - 圣伊内斯 - MA 阿菲亚医学院教授 -MA 巴西心脏病学会 SBC-AMB 正式会员 心肾体育锻炼适应实验室 - LACE
在从热表面到物体的二维热传导过程中,会遇到热扩散阻力。热扩散和热收缩阻力的相反问题在用于微电子和其他发热设备的热管理的散热器和热扩散器的设计中具有很大的技术相关性。过去在热扩散理论分析方面的大部分工作都是基于具有给定热通量的源。相比之下,等温源问题由于边界条件的混合性质而存在困难,因此只能获得近似解。这项工作推导出从等温源到有限厚度板或圆柱体的稳态热扩散阻力。混合边界条件的处理方式是将其置于空间变化的对流边界条件的形式中,源上的 Biot 数足够大以表示其等温性质。沿着一组足够的线性代数方程推导出该问题的级数解以确定级数系数。结果显示与有限元模拟非常吻合。将结果与先前报告的近似解在近似解的有效参数范围内进行比较。量化了关键无量纲参数对热扩散阻力的影响。结果表明,正如预期的那样,热扩散阻力随着等温热源尺寸的减小而增加。提出了一种具有非常好精度的三阶多项式相关性。这项工作推进了对过去仅报告了近似解的问题的理论理解。这里给出的结果为涉及扩散或收缩的各种实际热管理问题的热设计和优化提供了实用工具。
Geronimo Aydin 表示,在美国,电池存储设施的安全事件“相对罕见”,影响 1% 到 2% 的系统,并且往往发生在运营的头几年。该估计适用于“处于试点和示范阶段”的行业,她表示,自那以后,该行业已经标准化并改进了安全最佳实践。但清晰准确地向当地居民和其他利益相关者传达潜在风险仍然是该行业的一大障碍。
摘要:在全球范围内,在男性和女人中,死亡的主要原因之一是癌症。尽管治疗策略有重大发展,但不可避免的耐药性出现限制了成功并阻碍了治疗结果。内在的和获得的耐药性是负责癌症复发的常见机制。至关重要地调节肿瘤发生和抗性的几个因素,包括物理障碍,肿瘤微环境(TME),异质性,遗传和表观遗传改变,免疫系统,肿瘤负担,生长动力学和不可用的靶标。此外,转化生长因子-beta(TGF-β),缺口,表皮生长因子(EGFR)(EGFR),整联蛋白 - 纤维细胞基质(ECM),核因子Kappa-Light-cright-chain-enhancer acti-nf-κB的核因子 - 链链球菌(NF-κB),磷酸氨基糖酶/蛋白酶酶酶的酶酶/蛋白酶酶酶酶酶酶酶酶的酶酶/蛋白酶酶酶的酶酶酶的酶酶酶酶酶酶的,蛋白酶蛋白酶酶酶很高。 (PI3K/AKT/MTOR),无翼相关的集成位点(WNT)/β-catenin),转录的Janus激酶/信号转录器和激活剂(JAK/STAT)和RAS/RAF/RAF/RAF/MITITOGON激活的蛋白激活蛋白激酶(MAPK)信号通路具有某种pecive priance privical proment pivivotal的作用。为了指导未来的癌症治疗并改善结果,需要对耐药性途径进行更深入的理解。本综述涵盖了内在的和获得的抵抗力,并全面概述了有关机制的最新研究,这些机制使癌细胞能够绕过治疗障碍,并且像“卫星导航”一样,找到了替代途径,可以通过其“旅程”进行癌症进展。
摘要这项研究介绍了Drivaernet,这是3D行业标准汽车形状的大规模高保真CFD数据集,以及RegDGCNN(一种动态的图形卷积神经网络模型),均旨在通过机器学习进行空气动力的汽车设计。drivaernet,其4000个详细的3D汽车网架使用了50万个表面网状面和全面的空气动力性能数据,包括全3D压力,速度场和壁剪应力,解决了广泛的数据集以训练工程应用中深度学习模型的广泛数据的关键需求。它比以前最大的汽车公共数据集大60%,并且是唯一对车轮和车身底部进行建模的开源数据集。regdgcnn利用此大型数据集直接从3D网格中提供高精度的阻力估计,绕过传统限制,例如需要2D图像渲染或签名距离字段(SDF)。通过在几秒钟内实现快速的阻力估计,RegdGCNN便有助于快速的空气动力学评估,从而为在汽车设计中的数据驱动方法整合而实现了巨大的飞跃。一起,Drivaernet和Regdgcnn承诺将加速汽车设计过程,并有助于开发更有效的车辆。为了为未来的创新奠定基础,我们的研究中使用的数据集和代码可在https://github.com/mohamedelrefaie/drivaernet 1中公开访问。
柯林斯航空航天公司一直在为国防部设计未来军用飞机的起落架。该项目和报告重点关注前起落架阻力支架组件的设计、分析和重新设计。起落架被视为飞机上的主要结构部件之一。虽然起落架可能只占飞机总重量的一小部分,但它承受着巨大的负荷,并且在起飞、降落和地面操作期间必须承受高应力。起落架可能承受拉伸、压缩、扭转、剪切和弯曲。在起落架的设计过程中,必须考虑和分析所有这些因素。起落架设计极具迭代性,正如本报告所示,在最终设计投入制造之前,需要对单个组件以及整个组件进行多次修改。阻力支架对于组件来说至关重要,这绝对适用于起落架。本报告将介绍设计和重新设计阻力支架组件所需的步骤,重点介绍主要部件,例如上部和下部阻力支架、拨动杆、连杆和主轴销。还重点讨论了这些部件的实际结构分析,因为这可能是设计阶段最关键的方面。利用 FEA 分析部件以应用它们在操作过程中将看到的实际负载。FEA 结果可帮助应力分析师发现高应力位置以及弯曲和挠度水平。基于这些结果,可以进行有效的重新设计。请注意,由于这是一个军事计划,因此必须省略所有专有/技术数据才能使用。这意味着无法显示太多实际负载、尺寸或计算。这也包括 CAD 模型中的任何识别特征。因此,所有 CAD 模型都将被简化。已提供尽可能多的细节来展示可靠的设计概念和流程,而不会侵犯柯林斯航空航天技术数据政策。致谢:我要感谢柯林斯航空航天公司允许我将我的工作成果用于我的高级设计项目。我还要感谢我的同事和导师对这个项目的帮助以及我从他们那里获得的所有工程知识。Paul Wang 是我在柯林斯工作期间最优秀的导师。我从他那里学到的所有应对压力的技术技能将贯穿我整个职业生涯。
