在相关努力中,[10] 我们扩展了适用于均相 FRET 检测的分子识别元件列表,包括变构转录因子 (aTF),这是一类特定的底物结合蛋白,可在离散蛋白质结构域中结合 DNA 和小分子效应物。在这里,我们描述了使用特征明确的 aTF TetR 进行分子识别的其他新型传感器,使用改变 aTF-DNA 结合亲和力的 aTF 变体来调节传感器灵敏度,并展示了一种带有遗传编码供体荧光团的额外传感器设计。这些额外的传感器展示了我们方法的普遍性,同时详细介绍了一种更容易被各种研究小组采用的传感器设计。变构转录因子是调节蛋白,包含 DNA 结合结构域和效应物结合结构域,能够以高特异性和选择性识别小分子。 [11] 在目标分析物存在的情况下,aTF 对其 DNA 结合序列的亲和力会受到调节,从而促进下游基因表达的阻遏物或去阻遏物调节。[11] aTF 与其同源 DNA 和效应配体之间独特但相互关联的结合提供了一种内在的转导机制,我们将其与 FRET 偶联以进行光学读出。[10] 其他先前描述的基于底物结合蛋白的 FRET 传感器通过染料标记的配体的置换(竞争性测定)或蛋白质的构象变化来实现供体-受体距离的变化。[6,7] 我们的基于 aTF 的 FRET 传感器利用供体标记的 aTF 与其受体标记的同源 DNA 序列的分析物响应性解离来引起供体-受体距离的大幅变化。因此,这些 FRET 传感器无需对配体进行染料标记,因为染料标记会改变配体的结合行为 [12],同时能够通过供体和受体荧光团的完全解离产生显著的信号变化(图 1)。我们之所以选择 TetR 进行这项研究,是因为它是一种特性良好的 aTF,在实验室环境中广泛用于基因调控和诱导蛋白表达。[11] TetR
C末端结合蛋白(CTBP)是对癌症和炎症重要的保守转录阻遏物。 在转录共同调节剂中独特的CTBP具有功能性脱氢酶结构域。 由于多种恶性肿瘤显示CTBP水平升高,因此已经开发了针对该脱氢酶结构域的CTBP抑制剂。 尽管CTBPS脱氢酶功能对转录调节的重要性尚不清楚,但几项研究取决于CTBP抑制剂。 体外实验已经证实了这些化合物与CTBP活性位点的结合,但是缺乏特异性的证据。 为了解决这个问题,我们用MTOB或4-CL-HIPP处理了WildType和CTBP1,2个双基因敲除J774.1细胞并进行了RNA-Seq。 我们观察到,两种抑制剂都会引起不同的转录变化,表明非重叠的作用方式。 此外,在CTBP1/2双基因敲除细胞中观察到了任何一种抑制剂引起的大多数变化,提示靶向效应。 我们假设那些CTBP脱氢酶抑制剂对CTBPs缺乏特异性,并强调使用这些抑制剂从研究中推断出的发现进行仔细的重估。C末端结合蛋白(CTBP)是对癌症和炎症重要的保守转录阻遏物。在转录共同调节剂中独特的CTBP具有功能性脱氢酶结构域。由于多种恶性肿瘤显示CTBP水平升高,因此已经开发了针对该脱氢酶结构域的CTBP抑制剂。尽管CTBPS脱氢酶功能对转录调节的重要性尚不清楚,但几项研究取决于CTBP抑制剂。体外实验已经证实了这些化合物与CTBP活性位点的结合,但是缺乏特异性的证据。为了解决这个问题,我们用MTOB或4-CL-HIPP处理了WildType和CTBP1,2个双基因敲除J774.1细胞并进行了RNA-Seq。我们观察到,两种抑制剂都会引起不同的转录变化,表明非重叠的作用方式。此外,在CTBP1/2双基因敲除细胞中观察到了任何一种抑制剂引起的大多数变化,提示靶向效应。我们假设那些CTBP脱氢酶抑制剂对CTBPs缺乏特异性,并强调使用这些抑制剂从研究中推断出的发现进行仔细的重估。
CRISPR/CAS能够同时瞄准多个基因座(多重)的能力是改变植物育种的游戏规则。多路复用不仅会加速性格金字塔,而且还可以揭示功能冗余所隐藏的特征。此外,多路复用增强了基于DCAS的可编程基因表达,并实现了类似级联的基因调节。然而,包含串联阵列导向RNA(GRNA)的多重构建体的设计和组装需要无疤的克隆,并且由于存在重复序列而仍然很麻烦,从而阻碍了更广泛的使用。在这里,我们介绍了软件辅助克隆平台Goldenbraid(GB)的全面扩展,其中除了其多基因克隆软件之外,我们将新的工具集成了新的工具,用于基于IIS的易于且六个串联阵容的GRNA,使用Cas9和cas12a,使用GRNA-trees-trees-trees-crrna-crrrna-crrrna和crrrnna crrrnna crrrnna crrrnna crrrna carrna-crrrna crrrna cas12a。作为新工具的应力测试,我们组装并用于农杆菌介导的稳定转化A 17 cas9-grnas构造,靶向烟草中的Squamosa-promoter结合蛋白样(SPL)基因家族的子集。14个选定的基因是miR156的靶标,因此在少年到成年和营养至生殖相变中可能起重要作用。使用17个grnas构建体,我们生成了一组无Cas9的SPL编辑的T 1植物,该植物携带了多达9个双重突变,并显示出叶少年和更多的分支。GB4.0 Genome Edition纳入了新的基于Web的工具和随附的DNA零件集合,为植物基因组工程提供了多合一的开放平台。使用荧光素酶lyanum lycopersicum mtb促进剂或Agrobacterium tumefaciens Nopaline benthase prospermers inice inice inice Amamaine inice Amamaine in NiceAtient在NICAPASE中,NICAPASE PROSSITER in NICAPASE in NICAPASE in NICAPASE in NICAPASE in NICAPASE in NICAPASE in NICASIEN中,NICAIN中的使用单个和多重GRNA的GB组装DCAS9和基于DCAS12A的CRISPR/CAS激活剂和阻遏物使用单一和多路复用GRNA的功能。使用单个和多重GRNA的GB组装DCAS9和基于DCAS12A的CRISPR/CAS激活剂和阻遏物使用单一和多路复用GRNA的功能。
T. gondii具有复杂的生命周期,该生命周期是脊椎动物发生的无性发育,并且仅在FELID中发生的有性繁殖,因此研究较少。发育过渡依赖于基因表达模式的变化,最近的研究为包括组蛋白修饰在内的染色质塑料作用,在为每个给定阶段建立特定的表观遗传程序中。在这里,我们将T. gondii Microrchidia(Morc)蛋白确定为性承诺的上游转录阻遏物。MORC与Apetala(AP2)转录因子合作,显示出募集组蛋白脱乙酰基酶HDAC3,从而阻碍了预定的基因的染色质可及性,该基因预定了在性阶段独家表达。我们发现,缺乏Morc的细胞发生了明显的转录变化,从而表达了特定的基因曲目,并揭示了从无性增殖到性别分化的转变。MORC充当指导次级AP2因子层次表达的主调节剂,后者可能有助于
细胞分裂素反应1阻遏物1 (are1) 突变体表现出 NUE 增加、衰老延迟,从而增加了谷物产量。然而,ARE1 直系同源物在小麦中的作用仍然未知。在这里,我们从中国优良冬小麦品种郑麦 7698 中分离并鉴定了三个 TaARE1 同源物。然后我们利用 CRISPR/Cas9 介导的靶向诱变技术生成了一系列带有部分或三重无效 taare1 等位基因的无转基因突变系。所有无转基因突变系都表现出增强的对氮饥饿的耐受性,并且在田间条件下表现出衰老延迟和谷物产量增加。特别是,与野生型对照相比,AABBdd 和 aabbDD 突变系表现出衰老延迟和谷物产量显著增加,而没有生长缺陷。总之,我们的研究结果强调了通过基因编辑操纵 ARE1 直系同源物以培育高产小麦以及提高 NUE 的其他谷物作物的潜力。
髓样白血病是具有多种突变景观的异质性癌症。尽管许多突变的基因属于普通蛋白质复合物,但有些缺乏已知的功能伙伴,并且具有不清楚的作用。pHF6是一种良好的染色质结合蛋白,复发突变赋予急性和慢性髓样白血病的不利预后。在这里,使用人PHF6敲除和救援,我们表明PHF6是一种转录阻遏物,可结合活性染色质并抑制茎基因程序。我们剖析了九个临床错义突变,并表明所有人都会产生不稳定的,肌莫尔的或非功能性的PHF6蛋白。在收敛的证据线指导下,我们将PHIP(一种新认识的AML突变蛋白)视为PHF6的功能合作伙伴。我们表明PHIP损失表PHF6损失,并且PHF6需要PHIP占据染色质并发挥下游转录效应。我们的工作将两个不同的白血病蛋白统一的PHF6和PHIP统一成为一种抑制AML茎的常见功能复合物。
转录效应子是已知激活或抑制基因表达的蛋白质结构域。但是,缺乏对哪种效应域调节转录的系统性理解。在这里,我们开发了DCAS9介导的高通量募集(HT-RECRUIT),这是一种合并的筛选方法,用于量化内源性靶基因的效应子功能和测试效应子功能,用于包含各种环境的5,092个库中的库。我们还使用较大的文库瓷砖调节剂和转录因子来绘制从未注释的蛋白质区域绘制的效应子的上下文依赖性。我们发现许多效应子取决于目标和DBD上下文,例如可以充当激活因子或阻遏物的HLH域。为了实现有效的扰动,我们选择了包括ZNF705 KRAB在内的上下文固定域,从而改善了CRISPRI工具以使启动子和增强子保持沉默。我们通过结合NCOA3,FOXO3和ZnF473结构域来设计一种称为NFZ的紧凑型人类激活剂,该结构域可以通过更好的病毒递送和对嵌合抗原受体T细胞的诱导控制有效的CRISPRA。
基因的抽象条件表达和表型的观察仍然是生物学发现的核心。当前方法可启用开/关或不确定的分级基因表达。,我们开发了一个“脾气好”的控制器WTC 846,用于精确可调,分级,生长条件在酿酒酵母中基因的独立表达。受控的基因是由核酸脑抑制的强烈半合成启动子表达的,这也抑制了其自身的合成。基础表达被第二秒消除,“零”阻遏物。自动层环降低细胞对细胞的变化,同时通过化学诱导剂对蛋白质表达进行精确调整。WTC 846 allelic strains in which the controller replaced the native promoters recapitulated known null phenotypes ( CDC42, TPI1 ), exhibited novel overexpression phenotypes ( IPL1 ), showed protein dosage-dependent growth rates and morphological phenotypes ( CDC28, TOR2, PMA1 and the hitherto uncharacterized PBR1 ), and enabled cell cycle同步(CDC20)。WTC 846定义了一个“表达夹”,可以通过实验者在细胞蛋白丰度范围内调整蛋白质剂量,而设定点周围的变化有限。
摘要:生长素反应因子(ARFS)是调节生长素期反应基因表达的转录因子家族。在这里,我们对四倍体蓝莓(vocinium corymbosum cv。“ draper”)基因组序列。物理和化学特性,系统发育进化,基因结构,保守基序,染色体位置以及蓝莓ARF基因的顺式作用元素。在其基因组中发现了总共70个蓝莓ARF基因(VCARF),可以分为六个亚家族。VCARF基因在40个染色体上分布不均匀,并观察到编码长度从162到1117氨基酸的蛋白质序列。其外显子数量从2到22。VCARF启动子区域包含与光信号传导,有氧代谢,植物激素,压力和细胞周期调节相关的多个功能域。在蓝莓中发现的VCARF基因的家庭成员多于以前研究的植物,这可能是由于全基因组复制和/或串联复制的发生。vCARF表达模式,并观察到VCARF3,VCARF4,VCARF14,VCARF37和VCARF52都起着重要作用。vcarf3和vcarf4似乎充当阻遏物,而VCARF14则是公司和软质量品种之间果实差异的重要因素。
转录因子与序列基序结合,并充当敏捷因子或阻遏物。带有辅助辅因子星座的转录因子界面,以调节调节转录的不同机械步骤。我们迅速降低了必需和普遍表达的转录因子Znf143,以确定其在转录周期中的功能。ZNF143促进RNA聚合酶起始并激活基因表达。ZNF143结合其几乎所有活化靶基因的启动子。Znf143还结合了遗传转录启动位点,直接抑制基因的子集。尽管Znf143刺激了Znf143抑制基因的启动(即那些在Znf143 depletion上增加表达的人,结合的分子环境会导致顺式代表。Znf143与其他更有效的激活因子竞争启动子的访问,物理遮挡了转录起始位点和启动子序列序列元素,并在早期eLon-grongation期间充当了RNA聚合酶的分子障碍。通常调用上下文术语上下文来描述具有激活和抑制函数的转录因子。我们定义了ZnF143介导的顺式激活和抑制的上下文和分子机制。