关于能量循环的开创性研究表明,在没有温度偏见的情况下,如何产生能量频道[1-13]。这种原理可以可能应用于建立纳米级的能量矩形[6]。从理论的角度来看,能量传输通常与声子有关,但是与单个颗粒相比,这些集体激发更难以操纵[6,14]。先前的研究利用了非线性相互作用[4],Athermal Baths [2],绝热调制[5]或量子浮球系统[15]提供的机会。使用奇偶校验的超材料和非平衡强迫的组合,我们最近的工作[16]发现了新的矩形原理,这些原理表现出网络系统中站点之间的定向能量流。与许多以前的研究集中在两个直接连接的终端之间的运输[4]或通过不对称段[2-4]之间,我们的设置将所有节点及其连接置于平等的基础上[11-13],从而使将直接拟合研究扩展到具有复杂拓扑和差异的网络。基于我们最近的工作[16],在这里我们研究了增加的时间周期调制的效果。我们的模型系统是一类春季网络,每个质量都受到时间调节的洛伦兹力[17,18],并浸入活性浴中[19]。使用数值计算,我们表明时间调制系统能够纠正节点和浴室之间的能量频率。换句话说,尽管没有温度偏见,但我们的模型仍可以充当多体能泵。作为比较,我们以前的未调制系统[16]支持站点之间的净能量传输,但不支持站点和浴室之间的净能量传输。该调制会扩大工具箱,以操纵复杂网络中的能量传输。
N 元关系知识库 (KB) 嵌入旨在将二进制和超二进制事实同时映射到低维向量空间中。现有方法通常将 n 元关系事实分解为子元组,并且通常在欧几里得空间中对 n 元关系知识库进行建模。然而,n 元关系事实在语义和结构上是完整的;分解会破坏语义和结构的完整性。此外,与二进制关系知识库相比,n 元知识库具有更丰富和复杂的层次结构,这些结构无法在欧几里得空间中很好地表达。针对这些问题,我们提出了一个陀螺多边形嵌入框架来实现 n 元事实完整性保持和层次结构捕获,称为 PolygonE。具体而言,n 元关系事实被建模为双曲空间中的陀螺多边形,其中我们将事实中的实体表示为陀螺多边形的顶点,将关系表示为实体移位操作。重要的是,我们设计了一种基于顶点陀螺中心测地线的事实可信度测量策略,以优化关系调整后的陀螺多边形。实验结果表明,PolygonE 在所有基准数据集上都表现出 SOTA 性能,并且在二进制数据上具有良好的泛化能力。最后,我们还可视化了嵌入,以帮助理解 PolygonE 对层次结构的认识。
多普勒测速仪被添加到此传感器套件中以提高滤波器的性能。作为滤波器的一个组成部分,磁罗盘和陀螺罗盘偏差被估计
Explore+ 以 250 Hz(默认)的频率和 24 位分辨率对 ExG 数据进行采样。放大器还记录和传输温度、电池电压、加速度计、陀螺仪和磁力计数据。这意味着您可以随时获取放大器的绝对方向和状态。
摘要。这项研究工作旨在检查粘性耗散,磁场以及热辐射对卡森流体流动的重要性。在存在旋转微生物和纳米颗粒的情况下考虑流体流动。该问题的物理学由部分微分方程(PDE)控制。通过使用适当的相似性变量,将PDE集更改为普通微分方程(ODE)。要检查相关流参数,采用了一种称为光谱弛豫方法(SRM)的数值方法。此SRM方法采用基本的高斯 - 西德尔方法来将一组微分方程分解和描述。这种方法的选择是由于其一致性和准确性。发现粘性耗散参数(EC)可提高流体温度,速度和边界层(热和动量边界层)。强烈的磁参数的强对立产生了洛伦兹力,该力在边界层内拖动流体流动。发现纳米颗粒对旋转的微生物呈巨大影响。
一开始,惯性测量单元是一种电子设备,它使用加速度计、陀螺仪和磁力计的组合来测量和报告飞行器的速度、方向和重力。现在,惯性测量单元通常用于人机交互 (HCI)、导航目的和平衡技术,众所周知,Segway 个人运输车就是使用这种技术。
起初,惯性测量单元是一种电子设备,它使用加速度计、陀螺仪和磁力计的组合来测量和报告飞行器的速度、方向和重力。现在,惯性测量单元通常用于人机交互 (HCI)、导航目的和平衡技术,众所周知,Segway 个人运输车就是使用这种技术。
瘫痪和神经病,影响了全球数百万的人,可能会伴随着体质的重大丧失。触觉感觉是实现灵敏运动的核心,脑部计算机界面(BCI)研究人员探索了使用物质内电刺激来恢复手上的感觉。然而,当前的方法被局限于刺激大脑的陀螺区域,而功能成像表明指尖的表示主要位于沟区域。在这里,我们首次表明,可以通过对大脑的硫磺区域的电刺激来唤起手指尖高度的焦点感知。为此,我们通过刺激人类原发性体感皮质(S1)的陀螺和沟区域来绘制并比较手中引起的感觉。将两名患有顽固性癫痫的参与者与立体电脑摄影(SEEG)深度和高密度电视摄影(HD-ECOG)网格电极植入了高分辨率功能成像。使用人类连接项目开发的髓磷脂含量和皮质厚度图,我们阐明了唤起焦点感知的S1的特定子区域。此外,参与性的比较表明,使用Seeg电极引起的感知的沟刺激明显更大,比通过HD-ECOG电极循环刺激唤起的感知较少80%(P = 0.02),并且更频繁地本地化到指尖。最后,在手掌和指尖机械触觉刺激期间显示出高频神经活性的沟孔位置表现出与硫磺刺激相同的体积对应关系。这些发现表明,微创沟刺激可能会导致恢复感官障碍者的恢复感觉的临床生存方法。