进行了一项随机对照试验,以评估耳塞对早产新生儿中选定的生理和行为反应的有效性,及其与体重增加的关系,使用计算机生成的随机数和密封的包络技术的块随机化和密封的包络技术招募223早产223早产新生儿,在30周之间,距离37周之间,距离37周的遗传和1000 gram之间的遗传和差距不足。在SNCU研究组的每个早产婴儿中都应用了一对耳塞。心率,氧饱和度,睡眠持续时间和行为反应连续五天测量四次。这些参数的统计显着性是通过反复测量方差分析和回归模型确定的。研究组中早产新生儿的平均心率在干预期间在统计学上不显着。但是,耳塞的应用改善了氧饱和度,睡眠持续时间增加并提高了行为反应。在干预期间,体重增加具有统计学意义(P <0.05),在第二周和第4周的随访期间发现了相似的趋势。确定耳塞可有效地保持较高的氧饱和度,增加睡眠持续时间,增强行为反应并与体重增加有关。无创,具有成本效益的噪声控制措施(例如耳塞)来改善生理参数,例如氧饱和,睡眠持续时间,行为模式和早产新生儿体重增加。简介关键字:耳塞,噪声控制,生理和行为反应,早产,SNCU。
先前的研究人员认为,创伤恢复的基本阶段的第一步是建立稳定状态。12 因此,对于遭受创伤事件的个体来说,自我管理干预最合适的主题是能够实现自我稳定的方法。自我调节有助于创伤幸存者的康复,使他们能够控制和管理自己的情绪和行为,参与适应过程,有效利用资源,并防止可能导致创伤后应激障碍等持续性精神病理学的自决权侵犯。13 因此,经历过创伤应激的个体需要一种自我调节和自我监控自己状况的方法,以便按照自己的节奏进行康复。此外,最近的研究表明,即使不直接处理创伤记忆,创伤后应激障碍的治疗也可以有效。各种方法,包括基于互联网的认知疗法和心理教育、14 正念疗法 15 以及心理教育、呼吸练习和放松训练等行为疗法干预 16 都显示出了希望。神经反馈和音乐干预等其他技术 17,18 可有效减轻 PTSD 相关症状。这些发现表明,创伤暴露和非创伤暴露治疗均有可能缓解 PTSD 症状。19 此外,对于 PTSD 患者来说,要实现长期康复,需要采取综合干预措施来增进幸福感,而不仅仅是那些
接受化学疗法经验的人是一个具有挑战性的症状bur den,其中一些最常见的症状导致痛苦是化学疗法引起的恶心,呕吐和退缩(CINVR)和焦虑。症状负担是一种主观的患者体验,会导致生理负担,可以根据Symp Toms的严重性,频率和患病率进行量化(Gapstur,2007)。由于造血干细胞移植(HSCT)的患者的经验可能会超过一般肿瘤人群中患者所经历的症状负担,这是由于消除疾病所需的高剂量化疗和预防复发(Schmit-Pokorny&Eisenberg,2020年)。HSCT,也称为血液和骨髓移植,是一个过程,将健康的干细胞注入人体中,以替代受疾病或癌症损害的细胞(白血病和淋巴瘤协会,n.d.)。为了减少体内受损或癌细胞的量,患者在接受HSCT之前接受了高剂量的化学疗法和/或放射治疗,这为新细胞留出了空间,无法使新细胞到达骨髓并生长成无癌症的血细胞。此外,高剂量的化学疗法会导致接受HSCT患者的催吐风险和总体症状负担更高(Hesketh等,2020)。
慢性下背痛(CLBP)是一种多因素疾病,负担全球医疗保健系统[1,2],导致疼痛,残疾[3],僵硬和对运动的恐惧[4]。大约80%-90%的全球人经历了某种形式的LBP [4,5],这使其成为低收入和中等收入国家寻求医疗保健的最常见原因之一[6]。与颈部疼痛一起,CLBP是一种与总体成本最高[3]相关的医疗状况[3],影响生命的生物学,心理和社会维度[7]。SSYTEMATIC评论[8]和Cochrane评论[9]建议对CLBP的非手术治疗,包括运动疗法和教育[10]。 然而,慢性疼痛是一种复杂的现象,导致中枢神经系统(CNS)变化,挑战CLBP治疗的效果,为分析新的治疗方法提供了机会[11-13]。 慢性肌肉骨骼疼痛患者的最新证据表明,大脑可塑性会诱导中心敏化(CNS过度刺激性),从而改变了疼痛的过程,并创造了疼痛记忆和动力学恐惧症[1,14,15]。 这些中枢神经系统的变化会加剧焦虑,抑郁,压力和疼痛的灾难性[16],导致疼痛,心理问题,避免活动,功能降低,体重增加和持续性疼痛的恶性循环[14]。 疼痛神经科学教育(PNE)[17,18]旨在改变患者对疼痛的概念化,对他们进行疼痛的神经生物学和神经生理学教育,并专注于整体疼痛经历中的特殊性和奇异方差[14-17]。SSYTEMATIC评论[8]和Cochrane评论[9]建议对CLBP的非手术治疗,包括运动疗法和教育[10]。然而,慢性疼痛是一种复杂的现象,导致中枢神经系统(CNS)变化,挑战CLBP治疗的效果,为分析新的治疗方法提供了机会[11-13]。慢性肌肉骨骼疼痛患者的最新证据表明,大脑可塑性会诱导中心敏化(CNS过度刺激性),从而改变了疼痛的过程,并创造了疼痛记忆和动力学恐惧症[1,14,15]。这些中枢神经系统的变化会加剧焦虑,抑郁,压力和疼痛的灾难性[16],导致疼痛,心理问题,避免活动,功能降低,体重增加和持续性疼痛的恶性循环[14]。疼痛神经科学教育(PNE)[17,18]旨在改变患者对疼痛的概念化,对他们进行疼痛的神经生物学和神经生理学教育,并专注于整体疼痛经历中的特殊性和奇异方差[14-17]。最近的系统评价和荟萃分析报告说,PNE有助于减轻疼痛,改善疼痛知识,增强功能,降低残疾和社会心理困扰[19-21]。此外,PNE在体育活动和运动过程中增加了疼痛阈值,并最大程度地减少了医疗保健利用[19 - 21]。研究研究了PNE与各种治疗(例如治疗运动)结合的作用,并具有阳性结果[19]。例如,在改善残疾和疼痛方面,PNE与运动控制训练相结合比核心稳定性训练更有效[22]。这些发现表明PNE具有临床价值,但也表明继续研究与其他类型的运动的重要性[14,16]。在CLBP中,建议各种类型的治疗运动作为治疗方法(例如,强度,拉伸,核心稳定性,麦肯齐,瑜伽和功能恢复)[23,24]。根据Cochrane审查[25],这些练习对CLBP的影响得到了适度的证据确定性的支持。 神经肌肉运动(NMS)代表CLBP的不足区域[26]。 NMS的总体目的是恢复疼痛引起的障碍并增加功能活动,以改善CLBP患者的协调,力量,运动范围和本体感受[27]。 尽管以前的RCT报告了NMS对CLBP的积极作用,显示出腰部肌肉控制,灵活性和力量的改善[27-29],但根据Cochrane审查[25],这些练习对CLBP的影响得到了适度的证据确定性的支持。神经肌肉运动(NMS)代表CLBP的不足区域[26]。NMS的总体目的是恢复疼痛引起的障碍并增加功能活动,以改善CLBP患者的协调,力量,运动范围和本体感受[27]。尽管以前的RCT报告了NMS对CLBP的积极作用,显示出腰部肌肉控制,灵活性和力量的改善[27-29],但
参考文献建议:CASP 建议使用哈佛风格参考文献,即作者/日期方法。在作业正文中引用来源时,请提供作者姓名和出版日期。有关出版物的所有其他详细信息均在最后的参考文献或参考书目列表中提供。示例:批判性评价技能计划 (2024)。CASP(插入清单名称,即随机对照试验 (RCT) 清单。)[在线] 可从以下网址获取:插入 URL。访问时间:插入访问日期。知识共享 ©CASP 本作品根据知识共享署名 - 非商业 - 点赞许可。要查看此许可证的副本,请访问 https://creativecommons.org/licenses/by-nc-sa/4.0/ 需要进一步接受循证决策培训吗?我们的在线培训课程对医疗教育研究人员和任何其他学习者都很有帮助:
日本京都大学京都大学医学院的社会流行病学系B Hakubi Center,京都大学,京都大学,日本京东c。chan公共卫生学院,美国马萨诸塞州波士顿,D初级保健研究所(BIHAM),伯恩大学,伯恩大学,瑞士E社会与预防医学研究所(ISPM)日本福岛福岛医院H医院H福基马医科大学,福岛医科大学,日本福岛福基马I京都大学医学院先进医学院日本东京吉基大学医院重症监护病房,健康促进与人类行为部门以及京都大学医学研究生院临床流行病学,日本京都
全球人口目前正面临着史无前例的老龄化危机,具有认知障碍,包括轻度认知障碍(MCI),这是一个重大的公共健康挑战。这些障碍,尤其是痴呆症,一种严重的认知下降形式,对医疗保健基础设施和社会结构施加了巨大压力[1,2]。MCI的普遍性通常是痴呆症的先兆,随着年龄的增长而增加,增加了老年人的风险[3-5]。在中国出现了令人震惊的趋势,因为大约20%的65岁及以上的个体被诊断出患有MCI [6],这是一种疗养院居民中大幅增加的行为[7,8]。这种差异可能归因于这些人的基本心理需求被更严重地忽视或不足以满足[9,10]。虽然没有立即使人衰弱,但与MCI相关的微妙认知下降显着影响了个体的心理健康,通常表现为增加的抑郁症状和降低的治疗依从性[11]。当前延迟认知能力下降的策略包括药理学和非骨料干预措施[12-15]。一项研究表明,药理学解决方案在恢复老年人的认知功能方面的疗效有限,指向
背景:多领域干预对促进健康老龄化具有明显的好处,但维持长期收益的自我赋权策略仍然难以捉摸。目的:本研究评估了参与数字体感舞蹈游戏对大脑意象变化的影响,作为主要结果,以及其他身心健康指标作为与健康老龄化相关的次要结果。方法:2020 年 8 月 31 日至 2021 年 6 月 27 日期间,这项随机对照试验招募了 60 名年龄超过 55 岁且近期未参与数字舞蹈游戏的合格参与者。使用计算机生成的随机化序列将参与者按 1:1 分配到接受数字体感舞蹈游戏训练的干预组 (n=30) 或对照组 (n=30),不进行分层。匿名代码向研究人员隐瞒了干预分配情况,分配干预的个人不参与研究数据的分析。干预包括每周两次 30 分钟的舞蹈游戏,持续 6 个月,对照组接受健康老龄化教育。主要结果是大脑意象的变化。所有变量均在基线和 6 个月的随访中测量,并使用意向治疗分析的 t 检验来估计干预效果。结果:与对照组相比,干预参与者在左侧壳核灰质体积 (GMV)(估计 0.016,95% CI 0.008 至 0.024;P <.001)、左侧苍白球 GMV(估计 0.02,95% CI 0.006 至 0.034;P =.004)和左侧苍白球低频波动的分数振幅(估计 0.262,95% CI 0.084 至 0.439;P =.004)的大脑意象方面有显著差异。此外,干预组小脑 VI GMV 的想象也有所不同(估计值为 0.011,95% CI 0.003 至 0.02;P =.01)。干预组蒙特利尔认知评估总分(估计值为 1.2,95% CI 0.27 至 −2.13;P <.01)、生活质量(估计值为 7.08,95% CI 2.35 至 11.82;P =.004)和工作日坐着的时间(估计值为 −1.96,95% CI −3.33 至 −0.60;P =.005)也有所改善。此外,舞蹈表演与认知表现(P =.003)、健康状况(P =.14)、适应力(P =.007)和士气低落(P <.001)显着相关。
可以通过协助或进行实时手术,具有或不具有增强的脉冲血管和脑脊液灌注(CSF)灌注的尸体解剖来学习 cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。可以通过协助或进行实时手术,具有或不具有增强的脉冲血管和脑脊液灌注(CSF)灌注的尸体解剖来学习 cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。技能可以从模拟模型或VR转移到尸体进行现场手术。分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。在其中,为本文选择了77篇文章。大多数培训计划通常专注于微管外科培训。在大多数中心缺乏神经内窥镜检查的学习设施。学习神经镜镜检查与微神经外科有很大不同。从微管外科手术转换为神经内镜镜检查可能具有挑战性。研究生培训中心应具有装备良好的神经副本技能实验室,手术教育课程应包括神经内窥镜培训。学习内窥镜检查是关于该技术的优势,并通过连续训练克服内窥镜检查的局限性。
摘要在健康和营养的背景下,口腔和肠道微生物群之间的复杂相互作用使人们着迷。作为通往胃肠道的门户,口腔微生物群拥有各种各样的微生物物种,这些微生物物种显着影响或有助于各种疾病。与龋齿,牙周疾病和全身性疾病等疾病有关,包括糖尿病,心血管疾病,肥胖症,rheuma- Toid关节炎,阿尔茨海默氏病和结直肠癌。本综述旨在结合口腔和肠道菌群之间细微的关系,探讨饮食在制定健康促进和预防疾病的策略中的关键作用。从涵盖动物和人类的无数研究中汲取见解,我们研究了微生物营养不良及其对健康的影响的含义。从2000年1月至2023年8月,在PubMed Central,Web of Science,Scopus,Google Scholar和沙特数字图书馆进行了78篇科学文章的书目搜索。在严格的筛选过程之后,对选定文章的全文进行了严格审查以提取相关信息。不符合纳入标准的文章(特定于口服 - 肠道菌群相互作用,饮食和营养)被精心排除。饮食是影响口服和肠道菌群的关键参与者。这项全面的评论深入研究了复杂的各种饮食组成部分,例如纤维,益生元,益生菌和生物活性化合物,对这些生态系统中微生物的多样性和功能产生了显着影响。相反,加工食品中高的饮食,添加的糖和饱和脂肪与营养不良相关,口服和胃肠道疾病的风险升高。理解这种相互作用的复杂性对于开发创新方法的发展至关重要,从而促进了平衡的口服 - 肠道菌群轴并改善整体人类健康。的含义扩展到预防和治疗性相互作用,强调了将这些复杂性在公共卫生和临床实践中揭示这些复杂性的实际重要性。