摘要。对单个量子系统(例如单个光子、原子或离子)的精确控制为一系列量子技术打开了大门。这一概念的目标是创建能够利用量子效应解决数据处理和安全信息传输问题以及比现有方法更有效地对周围世界参数进行高精度测量的设备。量子技术出现的关键一步是二十世纪下半叶的开创性工作,它首先展示了量子力学对自然的描述的矛盾性和正确性,其次,奠定并引入了成为现代量子技术基础的基本实验方法。2022 年诺贝尔物理学奖授予了 Alain Aspect、John Clauser 和 Anton Zeilinger,以表彰他们对纠缠光子的实验、建立贝尔不等式的违反以及开创量子信息科学。
可靠的随机性是算法和应用中的核心成分,从数值模拟到统计抽样和加密。纠缠量子状态的测量结果可能违反铃铛不平等,从而保证其内在的随机性。这构成了证明随机性生成的基础。但是,此认证需要空间分离的设备,使其不适合紧凑的设备。在这里,我们提供了一种通用方法,用于在小规模应用程序上进行认证随机性生成,并执行结合固态发射极和玻璃芯片的集成光子演示。与大多数现有的认证协议相反,在没有空格分离的情况下,该协议容易受到现实设备固有的漏洞的影响,我们实现了信息泄漏的协议,因此与新兴的紧凑型可扩展设备兼容。我们演示了一个双重光子的光子设备,该设备在随机性上达到了最高标准,但对于现实世界的应用而被删除。完整的94.5 h长的稳定过程利用了一个明亮稳定的单光子量子点的源,以可重新发现的光子芯片为基础,并在Milliradian范围内在实现的阶段稳定,并且在93%以上的纠缠光子的一致性不可区分。使用上下文框架,我们证明了私人随机性生成,并实现了与随机扩展相兼容的速率,以安全地针对量子对手。
随机性的功能理论是在Vovk [2020]中以非算力的随机性理论的名义提出的。Ran-Domness的算法理论是由Kolmogorov于1960年代启动的[Kolmogorov,1968年],并已在许多论文和书籍中开发(例如,参见Shen等人。2017)。它一直是直觉的强大来源,但其弱点是对特定通用部分可计算函数的选择的依赖性,这导致其数学结果中存在未指定的加性(有时是乘法)常数。Kolmogorov [1965,Sect。 3] speculated that for natural universal partial computable functions the additive constants will be in hun- dreds rather than in tens of thousands of bits, but this accuracy is very far from being sufficient in machine-learning and statistical applications (an addi- tive constant of 100 in the definition of Kolmogorov complexity leads to the astronomical multiplicative constant of 2 100 in the corresponding p-value). 与VOVK [2020]中提出的未指定常数打交道的方式是表达有关随机性算法作为各种函数类之间关系的算法。 它将在教派中引入。 2。 在本文中,我们将这种方法称为随机性的功能理论。 虽然它在直观的简单性方面失去了一定的损失,但它越来越接近实用的机器学习和统计数据。 读者将不会假设对随机性算法理论的形式知识。 在本文中,我们有兴趣将随机性的功能理论应用于预测。 3。Kolmogorov [1965,Sect。3] speculated that for natural universal partial computable functions the additive constants will be in hun- dreds rather than in tens of thousands of bits, but this accuracy is very far from being sufficient in machine-learning and statistical applications (an addi- tive constant of 100 in the definition of Kolmogorov complexity leads to the astronomical multiplicative constant of 2 100 in the corresponding p-value).与VOVK [2020]中提出的未指定常数打交道的方式是表达有关随机性算法作为各种函数类之间关系的算法。它将在教派中引入。2。在本文中,我们将这种方法称为随机性的功能理论。虽然它在直观的简单性方面失去了一定的损失,但它越来越接近实用的机器学习和统计数据。读者将不会假设对随机性算法理论的形式知识。在本文中,我们有兴趣将随机性的功能理论应用于预测。3。机器学习中最标准的假设是随机性:我们假设观察值是以IID方式生成的(独立且分布相同)。先验弱的假设是交换性的假设,尽管对于无限的数据序列而言,随机性和交换性证明与著名的de Finetti代表定理本质上是等效的。对于有限序列,差异是重要的,这将是我们教派的主题。我们开始讨论在教派中预测的随机性功能理论的应用。2。在其中介绍了置信度预言的概念(稍微修改和推广Vovk等人的术语。2022,Sect。2.1.6)。然后,我们根据三个二分法确定八种置信预测因素:
之前对模仿大脑的人工智能系统(即神经网络)的研究表明,在神经网络活动中注入随机波动实际上可以提高它们在学习执行任务时的表现。然而,之前的研究是在相对简单的神经网络上进行的,这让人怀疑这种影响在现实生活中到底能发挥多大作用。
内在语言的潜力和实用性对于开发实用的日常脑机接口 (BCI) 应用至关重要,因为它代表了一种独立于外部刺激运行的大脑信号,但由于在解读其信号方面面临挑战,它在很大程度上尚未得到充分开发。在本研究中,我们在公开可用的数据集上评估了各种机器学习 (ML) 和深度学习 (DL) 模型的行为,采用流行的预处理方法作为特征提取器来增强模型训练。我们面临着重大挑战,例如受试者相关的变异性、高噪声水平和过度拟合。为了特别解决过度拟合问题,我们建议使用“BruteExtraTree”:一种依赖于从其基础模型 ExtraTreeClassifier 继承的中等随机性的新分类器。该模型不仅在我们的实验中与最佳深度学习模型 ShallowFBCSPNet 相匹配,在主题无关场景中达到 32% 的准确率,而且在主题相关情况下达到 46.6% 的平均主题准确率,超越了最先进的模型。我们在主题相关情况下的结果显示,使用受 LLM 预训练启发的内部语音数据的新范式是可能的,但我们也强调,迫切需要彻底改变数据记录或噪声消除方法,以便在主题无关情况下实现更实际的准确率。
量子伪随机性已应用于量子信息的许多领域,从纠缠理论到混沌量子系统中的扰乱现象模型,以及最近的量子密码学基础。Kretschmer (TQC '21) 表明,即使在没有经典单向函数的世界中,伪随机态和伪随机幺正态也存在。然而,时至今日,所有已知的构造都需要经典的密码构造块,而这些构造块本身就等同于单向函数的存在,并且在现实的量子硬件上实现也具有挑战性。在这项工作中,我们寻求同时在这两个方面取得进展——将量子伪随机性与经典密码学完全分离。我们引入了一个称为哈密顿相态 (HPS) 问题的量子硬度假设,该任务是解码随机瞬时量子多项式时间 (IQP) 电路的输出状态。仅使用 Hadamard 门、单量子比特 Z 旋转和 CNOT 电路即可非常高效地生成哈密顿相态。我们证明了问题的难度降低为问题的最坏情况版本,并且我们提供了证据证明我们的假设可能是完全量子的;这意味着,它不能用于构造单向函数。通过证明我们集合的近似 t 设计属性,我们还展示了当只有少量 HPS 副本可用时的信息论难度。最后,我们表明我们的 HPS 假设及其变体使我们能够有效地构造许多伪随机量子原语,从伪随机态到量子伪纠缠,再到伪随机幺正,甚至包括使用量子密钥的公钥加密等原语。在此过程中,我们分析了一种伪随机幺正的自然迭代构造,它类似于 Ji、Liu 和 Song (CRYPTO'18) 的候选者。
摘要 - 安全的多方计算(MPC)是分布式计算方法之一,它在其中计算一个函数,超过一个以上的一方共同给出的输入,并将这些输入与该过程中涉及的各方保持私密。秘密共享中的随机化导致MPC是对隐私增强的要求;但是,大多数可用的MPC模型都使用共享和组合值的信任假设。因此,忽略了秘密共享和MPC模块中的随机化。因此,可用的MPC模型容易出现信息泄漏问题,其中模型可以揭示共享秘密的部分值。在本文中,我们提出了使用随机函数发生器作为MPC原始的第一个模型。更具体地说,我们分析了对称随机函数生成器(SRFG)的先前开发,以提供信息理论安全性,如果系统安全地与无限计算资源和时间的对手有关,则该系统被认为具有无条件安全性。此外,我们应用SRFG来消除一般MPC模型中信息泄漏的问题。通过一组实验,我们表明SRFG是一个函数生成器,可以生成具有N/ 2-私有化到N-私有规范的组合函数(逻辑门的组合)。作为MPC的主要目标是对投入的隐私保护,我们分析了SRFG属性在秘密共享和MPC中的适用性,并观察到SRFG有资格成为MPC开发中的加密原始性。我们观察到,我们基于SRFG的MPC在吞吐量方面要好得多30%,并且还显示100%的隐私达到。我们还通过其他基于随机性生成的MPC框架来衡量我们提出的基于SRFG的MPC框架的性能,并使用最先进的模型分析了比较属性。
抽象的量子力学的引人注目的特性之一是钟形非本地性的出现。它们是该理论的基本特征,该理论允许两个共享纠缠量子系统的当事方观察到的相关性比古典物理学更强。除了其理论意义外,非本地相关性还具有实际应用,例如独立于设备的随机性生成,即使使用不受信任的供应商提供的设备获得了私人的不可预测数字。因此,确定可以使用一组特定的非本地相关性产生的可认证随机性的数量具有重大意义。在本文中,我们介绍了最近的贝尔型操作员的实验实现,旨在提供私人随机数,这些私人随机数与具有量子资源的对手相抵触。我们使用半明确编程在不依赖设备的场景中,就最小内侧面和von Neumann熵而言,在生成的随机性方面提供了较低的界限。我们比较了实验设置,这些设置提供了与Tsirelson接近事件发生率接近的贝尔违规行为,其设置的违规程度稍差,但事件速率较高。我们的结果证明了第一个实验,该实验从两方的二进制测量中证明了接近两个随机性。除了单轮认证外,我们还提供了使用熵积累定理的有限键协议来扩展量子随机性,并与现有解决方案相比显示了其优势。
1 简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 2 方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 2.1 调查区域。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...5 2.2 海洋条件 ..................。。。。。。。。。。。。。。。。。。。。。。。。.5 2.3 模拟虚拟物种 ....................。。。。。。。。。。。。。。。。。。。。。。。。.6 2.4 模拟虚拟调查 ....................。。。。。。。。。。。。。。。。。。。。。。。。.8 2.5 采样分辨率处理 .....................。。。。。。。。。。。。。。。。。。。8 2.6 建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 3 结果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.1 虚拟调查。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.......10 3.2 单变量模型 ..............。。。。。。。。。。。。。。。。。。。。。。。。..........11 3.3 模型选择 ............。。。。。。。。。。。。。。。。。。。。。。。。...................12 3.4 模型预测 ......。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 4 讨论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 4.1 方法学局限性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 4.2 采样类型的影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 4.3 环境异质性的影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 4.4 主要信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22
我们已经写出了水流方程。从实验中,我们找到了一组概念和近似值来讨论解决方案——涡街、湍流尾流、边界层。当我们在不太熟悉的情况下遇到类似的方程,并且还不能进行实验时,我们会尝试以一种原始、停滞和混乱的方式求解方程,以确定可能出现哪些新的定性特征,或者哪些新的定性形式是方程的结果。