Loading...
机构名称:
¥ 2.0

可靠的随机性是算法和应用中的核心成分,从数值模拟到统计抽样和加密。纠缠量子状态的测量结果可能违反铃铛不平等,从而保证其内在的随机性。这构成了证明随机性生成的基础。但是,此认证需要空间分离的设备,使其不适合紧凑的设备。在这里,我们提供了一种通用方法,用于在小规模应用程序上进行认证随机性生成,并执行结合固态发射极和玻璃芯片的集成光子演示。与大多数现有的认证协议相反,在没有空格分离的情况下,该协议容易受到现实设备固有的漏洞的影响,我们实现了信息泄漏的协议,因此与新兴的紧凑型可扩展设备兼容。我们演示了一个双重光子的光子设备,该设备在随机性上达到了最高标准,但对于现实世界的应用而被删除。完整的94.5 h长的稳定过程利用了一个明亮稳定的单光子量子点的源,以可重新发现的光子芯片为基础,并在Milliradian范围内在实现的阶段稳定,并且在93%以上的纠缠光子的一致性不可区分。使用上下文框架,我们证明了私人随机性生成,并实现了与随机扩展相兼容的速率,以安全地针对量子对手。

狭窄空间中的认证随机性

狭窄空间中的认证随机性PDF文件第1页

狭窄空间中的认证随机性PDF文件第2页

狭窄空间中的认证随机性PDF文件第3页

狭窄空间中的认证随机性PDF文件第4页

狭窄空间中的认证随机性PDF文件第5页

相关文件推荐

2021 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2024 年
¥1.0
2022 年
¥1.0
2007 年
¥31.0
2024 年
¥4.0
2024 年
¥4.0
2022 年
¥1.0
2022 年
¥4.0
2024 年
¥3.0
2022 年
¥1.0
2024 年
¥1.0
2022 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥7.0
2025 年
¥2.0
2024 年
¥6.0
2023 年
¥1.0
2022 年
¥2.0
2024 年
¥1.0
2025 年
¥3.0
2024 年
¥8.0
2021 年
¥1.0