摘要。多体系统的量子混沌已迅速发展成为一个充满活力的研究领域,涉及从统计物理学到凝聚态物理、量子信息和宇宙学等各个学科。在具有经典极限的量子系统中,先进的半经典方法提供了经典混沌动力学与量子层面上相应的普遍特征之间的关键联系。最近,处理通常的半经典极限 ℏ → 0 中的遍历波干涉的单粒子技术已经开始转变为类似半经典极限 ℏ eeff = 1 /N → 0 中的 N 粒子系统的场论领域,从而解释了真正的多体量子干涉。这种半经典多体理论为理解单粒子和多体量子混沌系统的随机矩阵相关性提供了一个统一的框架。某些经典轨道和平均场模式的编织束分别控制干涉,并为普遍性的基础提供了关键。所提出的案例研究包括 Gutzwiller 谱密度迹公式和不按时间顺序的相关器的多体版本,以及关于可能取得进一步进展的简要评论。
摘要:模型检查技术已扩展到分析以量子马尔可夫链(经典马尔可夫链的扩展)表示的量子程序和通信协议。为了指定定性时间属性,使用基于子空间的量子时间逻辑,该逻辑建立在 Birkhoffer-von Neumann 原子命题之上。这些命题确定量子态是否位于整个状态空间的子空间内。在本文中,我们提出了基于测量的线性时间时间逻辑 MLTL 来检查定量属性。MLTL 建立在经典线性时间时间逻辑 (LTL) 的基础上,但引入了量子原子命题,可在测量量子态后推断概率分布。为了便于验证,我们扩展了 Agrawal 等人 (JACM 2015) 描述的基于符号动力学的随机矩阵技术,以通过特征值分析处理更一般的量子线性算子(超算子)。此扩展使得开发一种有效的算法来根据 MLTL 公式对量子马尔可夫链进行近似模型检查成为可能。为了证明我们的模型检查算法的实用性,我们使用它来同时验证量子和经典随机游动的线性时间特性。通过此验证,我们证实了 Ambainis 等人(STOC 2001)先前发现的量子游动相对于经典随机游动的优势,并发现了量子游动独有的新现象。
我们给出了一种新型的随机矩阵普适性的精确结果,这种普适性是无限温度下量子多体系统可以表现出的。具体来说,我们考虑一个纯态集合,该集合由一个小的子系统支撑,该子系统是通过对系统其余部分进行局部投影测量而生成的。我们严格地证明了,从一类经历淬火动力学的量子混沌系统推导出的集合接近于一种完全独立于系统细节的普适形式:它在希尔伯特空间中均匀分布。这超越了量子热化的标准范式,该范式规定子系统放松为一个量子态集合,该集合再现了热混合状态下局部可观测量的期望值。我们的结果更普遍地意味着量子态本身的分布与均匀随机态的分布变得难以区分,即集合形成了量子信息论术语中的量子态设计。我们的工作建立了量子多体物理学、量子信息和随机矩阵理论之间的桥梁,表明伪随机态可以从孤立的量子动力学中产生,为设计量子态断层扫描和基准测试的应用开辟了新方法。
是概率度量的法律和弱收敛性的特征。对于更先进的应用程序分布和特征值的分布,Stieltjes Tranform不够强大,并且需要控制整个分解矩阵G K(z)。这是在I.I.D的[ALE+14]中进行了研究的。情况下,确定G k(z)接近涉及尺寸和频谱参数z的定量界限的g k(z)i p。此分析后来被携带到[KY17]中的线性依赖情况,表明G K(Z)接近确定性矩阵G(z),这通常不是身份矩阵的倍数。遵循[HLN07]的术语,我们将矩阵G(z)称为G K(z)的确定性等效词。在处理独立列的最一般情况下,[LC21]发现了类似的确定性等效物。值得注意的是,他们考虑了具有不同分布的列,这在先前的文献中未经研究。最后一篇文章不允许光谱参数z随维度而变化,尤其是用定量界限靠近真实轴。我们通过量化基础随机矩阵具有i.i.d的收敛来完成它来完成它。列。我们的结果包括两个不同的设置:当z是具有积极虚构零件的复数时,不会消失得太快,
我们如何表征量子混乱?在各种不同的方法中(参见参考文献1以进行审查),目前有两个不同的标准。第一个是能量谱的随机矩阵样的普遍性[2,3]:如果能量谱由高斯随机矩阵理论描述,则给定的量子系统是混乱的,我们只需用RMT表示[4-6]。第二个是对初始条件的敏感性:如果给定的量子系统在这个意义上是混乱的,如果它表现出指数级别的lyapunov的生长,则小扰动的小扰动生长,如超时阶 - 超顺序相关函数(OTOC)[7,8]。OTOC与Loschmidt回声密切相关,该回声也探测了混乱[9]。这些标准有几个不令人满意的特征。首先,目前尚不清楚这两个标准如何相关。第二,量子标准与经典混乱的特征的联系尚不清楚。可能会说,对初始条件的敏感性可以表征经典和量子混乱,但是局部量子系统存在问题。在古典理论中,最初的扰动可以任意地从数学意义上讲,并且指数级的增长可以永远继续下去。另一方面,在量子系统中,由于不确定性原理,扰动不能完全较小,并且局部量子系统通常不会显示指数级的增长,除非在特殊的限制下[10-14] [15]。因此,基于OTOC的早期生长的表征对通用局部量子系统不起作用。在上一篇论文[16]中,我们概括了上述单一混乱指数以定义量子lyapunov指数。基于Sachdev-Ye-Kitaev(SYK)模型和自旋链(XXZ)模型的计算,我们提出,Lyapunov指数如此定义的指数表现出普遍的行为:Lyapunov Spectrum Spectrum与RMT在系统中时同意RMT。量子混乱的这种表征避免了通用局部系统缺乏指数增长的问题,因为一个人只需要指数的统计特性,而不是其详细的增长为 -
量子混沌是十分重要的。它是孤立多体量子系统热化机制和本征态热化假设 (ETH) 有效性的基础[1-3],它解释了驱动系统的加热[4,5],它是多体局部化的主要障碍[6-9],它抑制了多体量子系统的长时间模拟[10],它可能导致量子信息的快速扰乱[11],并且它是可以观察到量子疤痕现象的区域[12-14]。对于具有适当半经典极限的系统,量子混沌是指在量子域中发现的特定属性,此时相应的经典系统在混合、对初始条件的敏感性和正的 Lyapunov 指数意义上是混沌的。对于自由度较少的系统(如台球和被踢转子),这种对应关系已经很明确,然而对于我们感兴趣的具有许多相互作用粒子的系统,由于半经典分析的挑战,这种对应关系仍然缺乏 [15]。因此,通常的方法是,如果一个给定系统显示出与全随机矩阵集合中发现的特征相似的相关特征值和特征态分量,则将其表示为混沌 [16-19]。最近对多体系统中量子混沌的研究大多针对有限密度的粒子进行,但出现了两个问题:量子混沌也能在零密度极限下发生吗?如果是这样,需要多少个相互作用的粒子才能使量子系统进入强混沌状态?这些问题对于冷原子和离子阱实验尤其重要,因为在这些实验中可以控制系统的粒子数量和大小。在参考文献中。 [20],通过逐步增加冷原子的数量,实验表明只需 4 个粒子即可形成费米海。仅使用四个相互作用的粒子也得到了量子混沌 [18] 和具有费米-狄拉克分布 [21-25] 的热化。最近,在含有 5 个粒子的系统中研究了热化 [26],并在仅含有 4 个粒子的系统中再次验证了量子混沌 [27-30],甚至可能在只有 3 个相互作用粒子的系统中 [31]。然而,目前尚不完全清楚其他混沌指标是否表现出类似的行为,以及是否可以通过引入长程相互作用来改变所获得的 4 个相互作用粒子的阈值。这些都是我们在本文中考虑的问题。我们重点研究自旋 1/2 链,其激发数 N 较少,幂律相互作用随自旋之间的距离衰减。这些系统类似于硬核玻色子或无自旋费米子的系统,因此这些情况下的粒子数对应于我们模型中的自旋激发 1 。我们发现,在具有短程耦合的系统中,当 N ≳ 4 时,无论系统规模有多大,都会出现强混沌。虽然大型链会改善统计数据,但不会改变我们的结果。我们表明,长程相互作用可促进向混沌的转变,并将阈值降低到仅 3 个激发,使得只有 3 个相互作用粒子的系统表现出与稠密极限下的大型相互作用系统类似的混沌特性。这对于离子阱实验尤其有意义,因为其中可以控制相互作用的范围 [ 32 , 33 ] ,以及探索长程相互作用系统的 Lieb-Robinson 界限的推广的研究 [ 32 – 35 ] 。