增强现实 (AR) 有可能利用环境信息来更好地促进分布式协作,但是,此类应用程序很难开发。我们介绍了 XSpace,这是一个用于创建空间感知 AR 应用程序以进行分布式协作的工具包。基于对现有应用程序和开发人员工具的审查,我们设计了 XSpace 来支持三种创建共享虚拟空间的方法,每种方法都强调不同的方面:共享对象、用户视角和环境网格。XSpace 在开发人员工具包中实现了这些方法,还提供了一组免费的可视化创作工具,使开发人员可以预览共享虚拟空间的各种配置。我们提供了五个示例应用程序来说明 XSpace 可以支持开发一组丰富的协作 AR 体验,而这些体验很难用当前的解决方案实现。通过 XSpace,我们讨论了对未来应用程序设计的影响,包括用户空间定制以及共享用户环境时的隐私和安全问题。
QCD 喷流是提取有关超相对论重离子碰撞后产生的夸克胶子等离子体信息的最佳途径之一。喷流的结构由多粒子量子干涉决定,很难用微扰法处理。当喷流在 QCD 介质中演化时,这种干涉图案会被修改,从而增加了另一层复杂性。通过利用量子技术的最新发展,可以通过直接量子模拟喷流演化来更好地理解这种影响。在这项工作中,我们引入了此类模拟的前身。基于光前哈密顿形式,我们构建了一个数字量子电路,可在随机颜色背景下跟踪单个硬探针的演化。就喷流淬灭参数 ˆ q 而言,使用理想量子计算机的经典模拟器获得的结果与已知的分析结果一致。通过这项研究,我们希望为未来使用量子计算机进行介质内喷流物理研究奠定基础。
摘要:胸腺基质淋巴细胞生成素 (TSLP) 是一种上皮来源的促炎细胞因子,与哮喘和其他过敏性疾病的发展有关。我们利用 Bicycle Therapeutics 的专有噬菌体展示平台来识别对 TSLP 具有高亲和力的双环肽 (Bicycles),由于它与两种受体形成的扩展蛋白质 - 蛋白质相互作用,因此很难用传统的小分子对 TSLP 进行药物治疗。结果表明,命中系列可与热点中的 TSLP 结合,IL-7R α 也使用此热点。在与 TSLP 结合的小肽的第一个 X 射线晶体结构和关键代谢物的鉴定的指导下,我们能够提高该系列在肺 S9 级分中的蛋白水解稳定性,而不会牺牲结合亲和力。这产生了强效的 Bicycle 46,其对 TSLP 具有纳摩尔亲和力( KD = 13 nM),血浆清除率低至 6.4 mL/min/kg,给大鼠静脉注射后的有效半衰期为 46 分钟。■ 简介
液压系统如今广泛应用于工业设备和工作机械。其毋庸置疑的优势包括:可通过紧凑的执行器设计获得较高的力或扭矩、可在各种环境条件下工作、经久耐用且可靠,并且防火安全性高。另一方面,与工作流体流动相关的现象,例如湍流、流体动力、喷射角偏差、介质状态变化、边界层的形成、空化等,很难用传统的数学模型来描述。此外,在液压系统控制领域,存在许多与非线性相关的问题,例如死区、滞后或饱和。一开始,对 Scopus 和 Web of Science (WoS) 数据库中索引的出版物进行了分析 [1,2]。搜索了以下短语:“artificial AND intelligence AND hydro”,与所有现有主题领域的文章、会议论文、会议评论、评论和书籍章节相关。首先,出版年份的界限设定在 2013 年至 2023 年之间。截至 2022 年特定年份的出版物数量如图 1 所示。在 2023 年的前五周,Scopus 索引了该领域的 18 份出版物,WoS 索引了 6 份。
确定了一种传统的韩国发酵植物食品的jogi(鱼大西洋杂种,微角膜虫)对物理化学成分(例如颜色,有机酸和氨基酸)的物理化学成分的影响。随着发酵的影响,jogi添加的泡菜的颜色变化增加了,但与没有jogi添加的泡菜的对照组相比,很难用肉眼来区分。在所有实验组中减少糖的降低,随着发酵的进行,jogi的Kimchi的值较低。乙酸,柠檬酸,乳酸和乙醇在两种类型的泡菜中高度生产,最重要的是,jogi -baechu -kimchi组比对照组显示出更高的乙酸和乳酸含量。在两种类型的泡菜中,氨基酸的增加和减少相似。但是,在制造后,明显地,明显地,咸味成分天冬氨酸和谷氨酸的检测到高于对照组。随后,随着发酵的进行而趋于减少,但内容高于对照组的含量。上面的结果表明,与物理化学成分相比,JOGI添加对氨基酸(尤其是咸味成分)的含量具有更大的影响。
这是一个很难用一句话回答的问题。不过,我试着给出一个简短的答案。工业需要电力(通常是高负荷)和工艺热。电力可以通过集中式和分散式电网连接的可再生能源产生。高负荷也可以通过“大量”分散式可再生能源来满足——只要工业不需要现场生产电力,这将很困难。唯一的选择是使用以合成燃料或生物燃料为燃料的热电联产电厂。工艺热在理论上可以通过 CSP 电厂生产。但在实践中,在大多数情况下这不是一个选择。因此,工艺热必须用可再生燃料现场生产。以下是一些有关工业过程热和可再生能源作用的有趣研究报告的链接: https://arena.gov.au/assets/2019/11/renewable-energy-options-for- industrial-process-heat.pdf https://www.irena.org/publications/2015/Jan/Solar-Heat-for-Industrial- Processes https://www.solarpaces.org/csh-could-decarbonize-industrial-heat- worldwide/ https://ammoniaindustry.com/renewable-energy-for-industry-ieas-vision- for-green-ammonia-as-feedstock-fuel-and-energy-trade/ Sven Teske 我理解能源导向机构应该提及(定义)化石燃料的淘汰日期。然而,不幸的是,大多数能源导向机构都对成员国做出回应。根据你的说法,哪个国际实体可能有权提出这一建议,并产生真正的影响?
蛋白质序列相似性搜索是基因组学研究的基础,但是当前方法通常无法考虑可以指示蛋白质功能的关键基因组环境信息,尤其是在微生物系统中。在这里,我们提出了Gaia(基因组AI注释器),这是一个序列注释平台,可在基因组数据集跨基因组数据集进行快速,上下文感知的蛋白质序列搜索。Gaia利用GLM2是一种在氨基酸序列及其基因组邻域训练的混合模式基因组语言模型,以生成整合序列结构 - 膜片信息的嵌入。这种方法允许识别在保守的地理环境中发现的功能相关基因,仅传统序列或基于结构的搜索可能会错过。GAIA可以实时搜索来自131,744个微生物基因组的超过8500万蛋白簇(定义为90%序列身份)的策划数据库。我们将基于GLM2嵌入的搜索的序列,结构和上下文灵敏度与MMSEQS2和FOLDSEEK等现有工具的序列,上下文灵敏度进行了比较。我们展示了噬菌体尾蛋白和铁载体合成基因座的基本发现,这些发现以前很难用传统工具注释。Gaia搜索可在https://gaia.tatta.bio上免费获得。
三维 (3D) 打印是一种令人兴奋的制造技术,它改变了我们治疗各种疾病的方式。3D 打印也称为增材制造,它以逐层方式将材料融合在一起,以构建最终的 3D 产品。该技术使设计过程更加灵活,能够高效生产现成和个性化医疗产品,比传统制造工艺更能满足患者的需求。在骨科手术领域,3D 打印植入物和器械可用于治疗各种疾病,而这些疾病原本很难用传统减材制造的产品来处理。此外,3D 生物打印对骨骼和软骨修复程序产生了重大影响,并有可能彻底改变我们治疗患有衰弱性肌肉骨骼损伤患者的方式。尽管成本可能很高,但随着技术的进步,3D 打印的经济性将会提高,尤其是这项技术的好处已在骨科手术和整个医学领域得到明显体现。本综述概述了 3D 打印技术的基础知识及其在骨科手术中的当前应用,最后简要总结了 3D 生物打印及其未来的潜在影响。
塑料是整个整个生命周期的污染来源,在全球各个阶段都有释放空气,土地和水。塑料是化学物质3,许多塑料是令人关注的物质。这种污染始于提取塑料生产的原料(即化石燃料或生物基碳源),其中包括温室气体(GHG),压裂水,溢油,化学物质,化学物质,肥料和橄榄剂的释放。在聚合物和生产阶段,化学物质以及微型和纳米塑料(MNP)中释放,包括单体,聚合物,添加剂,颗粒,薄片,粉末和碎片4。在运输5期间还会发生溢出和释放。在商业,工业和消费者使用阶段期间,塑料是故意和无意间释放的,例如,通过使用渔具,农业塑料;以及来自环境中塑料的化学物质和MNP的释放和排放。在废物管理过程中发生了更多的发行,包括回收6。此外,塑料不断天气,使这些较小的颗粒在永久运动中,这是一个很难用小颗粒脱落的目标,化学物质释放了7。塑料污染和修复栖息地也可能导致MNP的释放,以及单体,聚合物,并与其他故意和无意间添加的化学物质结合使用。塑料污染通过每日暴露,多种暴露途径(例如,污染的食物或颗粒吸入)影响环境和人类健康8,并累积影响。
强相关是一般物质阶段的特性,因为即使是弱相互作用的材料也可以在某个参数区域中强烈相互作用。当将费米表面(FS)调节为小或设计为平坦时,就会发生这种情况。金属中的库仑相互作用很小,仅仅是因为电荷是由粒子孔对筛选的,颗粒孔对筛选,在FS较大时会产生丰富的电荷。实际上,任何狄拉克的材料都与fs靠近狄拉克锥的尖端密切相关。在清洁石墨烯[1,2]和拓扑绝缘子的表面[3-5]中证明了这一点,可以通过全息理论[6-8]定量解释。在扭曲的双层石墨烯[9,10]中,由于形成了一个称为Moire晶格的有效晶格系统,因此出现了平坦的带,该系统的尺寸比原始晶格大。简而言之,强烈的相关现象是普遍存在的,其中传统方法的运作不佳。因此,已经渴望了一种新方法。很难用其基本构建块来表征强相互作用的系统(SIS),并且一个问题如何简化系统以仅用几个参数制作明智的物理学。一种可能的是,由于损失的通用性,它们在量子关键点(QCP)变得很简单