抽象的深度学习模型,例如卷积神经网络(CNN)和视觉变压器(VIT),在MRI图像上脑损伤的分类中已经实现了最先进的性能。但是,这种类型的图像的复杂性要求CNN使用具有更多参数的更深层体系结构,以有效地捕获其高维特征和微妙的变化。一方面,VIT提供了一种应对这一挑战的不同方法,但是它们需要更大的数据集和更多的计算成本。在另一侧,整体深度学习技术(例如装袋,堆叠和增强)可以通过组合多个CNN模型来帮助减轻这些限制。这项研究探讨了这些方法,并使用三种方法进行比较,以评估其准确性和效率:基于CNN的转移学习,基于VIT的转移学习和集成深度学习技术,例如基于XGBOOST,ADABOOST方法,袋装,堆叠和提高。在四个具有不同级别的复杂性和脑部病变类型水平的MRI图像数据集上进行的实验表明,与已经存在的方法相比,CNN与集合技术的组合为单个CNN和VITs提供了非常有竞争力的性能,并具有有趣的改进。
*用于跑步:Nordborg。†其他字母列表:Carlos C. Alonso-Blanc 3,Fritschi Catri 2,Grigoreva 5, Kersey 10,康沃尔郡亚历山大5,Quichao Lian Magnus Nordborg 5,Ferdinand A. Rabbanal 2,Rebecca Schandry 2,路易莎·塞斯代尔2,塞巴斯蒂安边境
1 Utrecht University, Institute for Marine and Atmospheric Research, Princetonplein 5, 3584 CC Utrecht, Netherlands 2 Mediterranean Institute of Advanced Studies (IMEDEA, UIB-CSIC), Esporles, Spain 3 Utrecht University, Debye Institute for Nanomaterials Science & Institute for Sustainable and Circular Chemistry, Inorganic Chemistry and Catalysis,荷兰荷兰UTRECHT USITEITITITSWEG 99,3584 CG UTRECHT,GRENOBLE ALPES,CNRS,INRAE,IRD,IRD,GRENOBLE INP,INP INP,INTITUT desgésosciencesde l'evournornement(Ige)
作者:Alice Lunardon 1*、Weronika Patena 1*、Cole Pacini 1、Michelle Warren-Williams 1、Yuliya Zubak 1、Matthew Laudon 2、Carolyn Silflow 2、Paul Lefebvre 2、Martin Jonikas 1,3 1 普林斯顿大学,新泽西州,美国;2 明尼苏达大学,明尼苏达州,美国;3 霍华德休斯医学研究所 * 这些作者贡献相同。摘要。莱茵衣藻(以下简称衣藻)是研究光合作用、纤毛运动和其他细胞过程的有力模式生物 [1–4]。已映射的核随机插入突变体的 CLiP 文库 [5,6] 通过提供目标基因的突变体,加速了数百个实验室在这些领域的进展。然而,由于其对高置信度破坏等位基因的基因组覆盖率有限(46% 的核蛋白编码基因在外显子/内含子中具有 1+ 高置信度等位基因;12% 的基因在外显子/内含子中具有 3+ 等位基因),因此其价值受到限制。我们在此介绍 CLiP2(衣藻文库计划 2)文库,它大大扩展了可用的已映射高置信度插入突变体的数量。CLiP2 文库包含 71,700 个菌株,覆盖 79% 的核蛋白编码基因在外显子/内含子中具有 1+ 高置信度等位基因,以及 49% 的基因在外显子/内含子中具有 3+ 等位基因。社区可通过衣藻资源中心获取突变体。
1970年代后期我在达尔豪西大学(Dalhousie University)的研究生时,我与研究生Rob Douglas和我们的博士学位一起工作。顾问格雷厄姆·戈达德(Graham Goddard)关于LTP的协会性能在通往齿状回的穿孔途径中。我们发现合作/协会的故事(McNaughton,Douglas和Goddard 1978)已经叙述(McNaughton 2003)。那时,唐纳德·赫布(Donald Hebb)是达尔豪西(Dalhousie)的名誉教授,在2003年的论文结束时,我描述了赫布(Hebb)对他对突触关联性的想法的回应表明,他对我的建议是正确的,如果我对他的互联阶段和阶段相互融合,那么他对我的建议是更重要的。研究记忆的神经基础。
现代科学和社会中大多数问题的极端复杂性对我们最好的理论和计算方法提出了非常巨大的挑战。作为一个例子,即使是最强大的超级计算机,也可以基于流动运动方程的直接模拟来预测行星尺度上天气的任务前面的Exascale操作(每秒10亿个流量点操作)。此外,这个和类似的问题通常受到影响解决方案的初始数据和其他参数引起的各种不确定性来源。因此,每个案例研究都需要几个实现,以积累足够的统计信息(集合模拟),从而进一步加强了对计算能力的追求。鉴于电子计算机面临着非常严格的能量限制,因此不断寻求替代模拟策略。在过去的十年中,巨大的效果已经专门用于量子计算机的开发,使用能够利用量子系统同时占据众多状态的硬件设备(量子纠缠)。直接优势是,量子系统原则上可以执行多种并行量子计算,而不是只能在二元状态下运行的经典计算机(位)。最近,没有一天没有
类失衡。不平衡的数据集可以使机器学习模型偏向多数级别,从而影响了他们准确预测少数类别的能力[24]。数据不平衡的问题通常与错误分类的问题有关,在这些问题中,与多数类相比,少数类别往往会被错误分类[25]。可以通过减小或过度采样来减少问题,从而产生类平衡的数据。合成的少数群体过度采样技术(SMOTE)是一种非常流行的过采样方法,旨在改善随机的过度采样[26]。根据Batista等人[25],过度采样方法比未经少采样方法给出了更好的结果。当数据高度不平衡时,多数族裔和少数族裔之间的显着差异可以通过过度采样方法来处理。通过添加或删除数据集中的样本,可以解决不平衡的类分布问题[27]。
蛋白质是动态分子,在生物过程中和其他方面的热力学采样构象中的状态之间的过渡。尽管由X射线晶体学生成的模型通常描绘了单个构象,但这实际上是一个集合度量。蛋白质晶体是一个巨大的分子阵列,从衍射中重建的电子密度可捕获该阵列中原子位置之间的变异性。随着蛋白质链中的灵活性的增加,电子密度越来越散布。由于难以识别和建模特定构象产生平均密度,因此通常仅以B因子的形式间接报告最佳拟合模型周围的变异性。然而,如果可检测到的晶体学者在多个替代位置(通常称为Altlocs)中的原子模型。交替位置的蛋白质主链段仍然不足以识别,因为大多数可视化平台(例如Pymol和Chimerax)以及使用结构模型作为输入(例如Gromacs)的程序完全忽略了Altloc或用简单的启发式方法来解决它们[4]。最近的工作[11]创建了从PDB结构中提取的Altloc的全面目录,这表明该数据集应在努力中使用单个序列预测多个结构的努力。有趣的是,作者表明,对于一组良好的分离和稳定的Altlocs,即使结构合奏预测因子识别该区域是灵活的,他们也无法捕获实验确定的构象甚至骨架构象分布的双峰性。
I. 引言 我们考虑一个涉及两方 Alice 和 Bob 的通信场景。给定一个量子态集合 ρ,其标签位于集合 M 中,双方均已知该集合。在每一轮中,Alice 以概率 Tr[ ρ ( m )] 选取一个标签 m ∈M,并将状态 Tr[ ρ ( m )] − 1 ρ ( m ) 交给 Bob。Bob 的目标是正确猜出标签 m,并允许他一次查询 M 中的一个元素,直到他的查询正确,此时该轮结束。Bob 承担的成本函数是猜测的平均次数,直到他正确猜出 m 。Bob 最通用的策略是执行量子测量 π,从 M 的编号集合 NM 中输出一个元素 n,然后按照 n 指定的顺序查询 M 中的元素。因此,猜测由标签 m 在编号 n 中的出现次数给出,对所有编号取平均值。使用量子电路的形式化[1],设置如下: