1:30 pm 10-1 :(被邀请)类似基于变压器的语言模型(被邀请)类似类似的硬件加速器»Geoffrey W. Burr(美国)1,Hsinyu Tsai(美国)1,IEM Boybat(瑞士)博士(瑞士)2,William A. Simon(Switzerland) Vasilopoulos(瑞士)2,Pritish Narayanan博士(美国)1,Andrea Fasoli博士(美国)1,Kohji Hosokawa先生(日本)3(日本)3,Manuel Lealoo(瑞士)博士(瑞士)2国家)1,查尔斯·麦金(Charles Mackin)(美国)1,埃琳娜·费罗(Elena Ferro)(瑞士)2,Kaoutar El Maghraoui博士(美国)4,Hadjer Benmeziane博士(瑞士)2,Timothy Philicelli(美国)5,美国的Timothy Philicelli博士(瑞士) ,Shubham Jain博士(美国)4,Abu Sebastian博士(瑞士)2,Vijay Narayanan博士(美国)4(1。IBM研究-Almaden,2。IBM Research Europe,3。IBM东京研究实验室,4。 IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM东京研究实验室,4。IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM T. J. Watson Research Center,5。IBM Albany Nanotech)IBM Albany Nanotech)
您可能会注意到,黄绿色、红色、金色和粉红色以 RGB 颜色代码表示。GDS 层编号和名称可在 PDK 图层图文件中找到(参见图 1(a)),而颜色及其代码可在技术文件中获得(参见图 1(b))。通常有一个用户友好的图层窗口 (LSW) 可帮助在请求的 LayerColors.map 中转换两个文件。可以实现一个自动化工具来进行此类转换。但是,此过程每个 PDK 仅运行一次。不同 PDK 版本之间的 GDS 编号、层名称和颜色不会改变。此外,CAD 工具通常使用示例中提出的颜色代码。因此,仅在安装新的 PDK 时才需要此过程。GDS 编号是不同 PDK 文件之间变化最大的数据。商业 PDK 中的图层颜色通常相似,例如(XFAB Mixed-Signal Foundry Experts,2019 年)。
摘要。块体碳化硅 (SiC) 的优越物理特性以及一维 (1D) 纳米结构特定物理特性的预期增强,激发了一系列针对纳米线 (NW) 制造和特性以及其在器件中的应用的研究。SiC 纳米线场效应晶体管 (NWFET) 是研究 SiC NW 在外部刺激(如电场)(集成电路中的应用)或 NW 表面上存在力或化学/生物物种(传感器中的应用)时在不同温度下的电特性的理想器件概念。SiC NW 量子传输建模的初步报告揭示了实现与 Si 基 NWFET 相当性能的前景。然而,实验性的 NWFET 演示表现出较低的载流子迁移率、I ON /I OFF 比和跨导 (gm ) 值,这对其进一步发展构成了障碍。低性能主要源于高度无意掺杂和未优化的 SiO 2 /SiC NW 界面。事实上,由于缺乏对 SiC NW 自下而上的生长过程的严格控制,导致非常高的载流子浓度(主要源于无意掺杂)接近退化极限。高密度陷阱和固定电荷的低界面质量导致栅极电场屏蔽,并表明需要进一步研究 SiO 2 /SiC NW 界面。由于这两种影响,即使在非常高的栅极电压下也无法实现器件关断。目前,只有在源/漏极 (S/D) 区域具有肖特基势垒 (SB) 的背栅极 NWFET 才表现出明确的关断和改进的性能,这要归功于通过全局栅极作用间接调制漏极电流,从而调节 S/D 区域的 SB 透明度。
CMOS 技术的巨大成功以及由此带来的信息技术进步,无疑归功于 MOS 晶体管的微缩。三十多年来,MOS 晶体管的集成度和性能水平不断提高。随后,为了提供功能更强大的数字电子产品,MOSFET 的制造尺寸越来越小、密度越来越高、速度越来越快、成本越来越低。近年来,微缩速度不断加快,MOSFET 栅极长度已小于 40 纳米,器件已进入纳米世界(图 1)[1]-[2]。所谓的“体”MOSFET 是微电子技术的基本和历史性关键器件:在过去三十年中,其尺寸已缩小了约 10 3 倍。然而,体 MOSFET 的缩放最近遇到了重大限制,主要与栅极氧化物(SiO 2 )漏电流 [3]-[4]、寄生短沟道效应的大幅增加以及迁移率急剧下降有关 [5]-[6],这是由于高度掺杂的硅衬底正是为了减少这些短沟道效应而使用的。
论文提交:欢迎作者提交上述领域的原创和未发表的论文。作者必须先提交一段摘要,然后提交最终论文以供审查。提交的论文不得超过 6 页,并遵守 IEEE 会议模板,即 2 栏样式(可在会议网站上找到)。论文可以作为普通论文或短文接受。这两种类型的论文都将收录在 IEEE 论文集中。论文集的页数限制为普通论文 6 页和短文 4 页。被接受为短文的 6 页论文的作者必须将其缩减为 4 页才能发表。欢迎提交在 RISC-V 峰会上展示或提交的相关工作的完整论文版本。请参阅研讨会网页以获取最新信息。特别会议征集:也欢迎提交特别会议提案。有关更多信息,请访问研讨会网站并查看具体征集。论文出版:只接受原创、未发表的作品。会议论文集将由 IEEE 计算机学会出版,并将出现在数字图书馆中。作者注册:每篇被接受的论文在提交照相排版论文时必须至少有一个完全付费的注册,并且必须有一名作者参加研讨会。最佳论文奖:委员会将选出最佳论文奖和最佳学生论文奖,并在会议上颁发。与会议相关的期刊特刊:DFTS 2025 被接受的论文的作者将被邀请向专门针对 2025 年会议的区域期刊的特刊提交该作品的扩展版本。未来的作者应遵守以下截止日期:摘要提交:2025 年 4 月 27 日全文提交:2025 年 5 月 4 日录取通知:2025 年 7 月 8 日照相排版和作者注册:2025 年 7 月 25 日
氮化铝(ALN)是由于其高热电导率高的3D集成电路(IC)的热管理材料。然而,在低温下生长的Aln薄膜中实现了高温的高温电导率,这对后端(Beol)兼容性构成了显着的挑战。这项研究报告了高温度SIO 2底物在低温(<200°C)下在低温(<200°C)下降低的近300 nm厚的Alnfms溅射,接近90 wm-1 K-1的高平面热电导率。探索了跨平面与平面导热率,质地,晶粒尺寸,氧含量,Al:N原子比和这些纤维的热边界电导之间的相关性。这些发现揭示了晶粒方向对齐在达到高导热率和高热边界电导方面的关键作用。使用X射线差异引入了一种方法来有效地监测Aln薄膜的导热率。这项研究提供了有价值的见解,可以帮助在半导体生产线上实施有效的热管理材料。
资格:考生应至少拥有 ECE / IEE / 电气 / CSE / IT / 电子科学硕士或同等专业的 BE/B.Tech 2 年级及以上学位。录取:申请表将从加尔各答 Jadavpur 大学电子与电信工程系 IC 中心 3 楼发出,或从我们的网站 [https://jadavpuruniversity.in] 下载。填写好的申请表应于周一至周五上午 11 点至下午 5 点送达 IC 中心。课程费用:7,000 卢比(JU 学生可享受 20% 优惠)+ 18% 的 GST 以即期汇票的形式开具给“REGISTRAR, JADAVPUR UNIVERSITY”,可在加尔各答的任何国有分支机构支付。一旦缴纳,课程费用将不可退还。不提供宿舍住宿。附件:一张 PP 尺寸照片、一份 Madhyamik 准考证/出生证明的复印件、高中成绩单、学期成绩单 [需附上成绩单/证书的认证/自认证副本]
与传统的 2D 计算系统相比,超密集 3D 集成电路(3D IC),例如单片 3D IC(图 1),可以为数据密集型应用带来巨大的能量延迟积(EDP)优势 [1,2]。为了实现这些优势,需要将多层逻辑和存储器(例如,逻辑和/或存储器设备的薄层,以及相关的信号/全局金属布线)以 3D 形式集成,并使用有限长宽比的后端制程(BEOL)层间过孔(ILV)建立超密集(例如,间距 ≤ 100 纳米)垂直连接 [3]。现有的 BEOL 布线结构已经在使用这种纳米级 ILV。3D IC 变得至关重要,因为工艺技术小型化的根本限制使得传统的缩放路径更加困难。但是,必须克服重大的热挑战才能在多个 3D 层上实现高速和高功率计算引擎 [4-5]。如果没有新技术,未来 3D IC 的上层最高温度将大大超过可靠运行所需的上限(例如 [6] 中的 125°C)。我们使用图 1 中的单片 3D IC 来了解 3D 层中的温升和热耗散(详细分析见第 III 部分)。图 1 中的 N 层中的每一层都包含一层高速、高功率硅逻辑器件(例如,计算引擎)和由铜布线和超低κ 层间电介质 (ILD) 组成的 BEOL 层(例如,用于信号布线)。各层通过超密集 ILV 电连接。在某些设计中,每层还存在硅存储器、存储器访问设备和额外的 BEOL。3D IC 由附加的散热器进行外部冷却,散热器将产生的所有热量以散热器比传热系数 h(W/m 2 /K)散发到环境中。最高温度 T j 取决于散热器、环境温度和 N 层的热特性。散热器创新(如 [7])只需散热器上 10°C 的温升(即 h= 10 6 W/m 2 /K)即可消除 1000 W/cm 2 的热量,尽管
课程名称 学分 联系时间 MV451 核心数字 IC 设计 3 3 MV452 核心 VLSI 信号处理 3 3 MV454 核心纳米制造实验室 3 6 MV455 核心 IC 设计实验室 -II 3 6 MV456 核心学期项目 -II 2 4 选修课 1 待定 2 选修课 2 待定 3 3 选修课 3 待定 3 3 待定:待公布