有限摩托车配对是一种非常规的超电导率形式,被普遍认为需要有限的磁化。替代磁性是一种新兴的磁相,具有高度各向异性的旋转分裂的特定对称性,但净净磁化为零。在这里,我们研究了与常规S波超导体相关的金属altermagnets中的库珀配对。值得注意的是,我们发现,尽管系统中的净磁化为零,但在Altermagnets中诱导的库珀对获得了有限的质量动量。这种异常的库珀对动量在很大程度上取决于传播方向,并表现出异常的符号模式。此外,它产生了几个独特的特征:(i)高度取决于顺序参数中的振荡,(ii)在约瑟夫森超流量中可控的0-π跃迁,(iii)大型cooper-angle-angle cooper-pair-pair-pair-pair pair toptories在连接中的旋转范围与串联的串联(vanist and)的旋转(ii iv)的旋转相似的方向相平行(iv)方向。最后,我们讨论了我们在候选材料(例如RUO 2和KRU 4 O 8)中的预测实施。
是由于最近在沮丧的Kondo lattice cepdal中发现了抗铁磁顺序与费米液体之间的中间量子临界阶段的动机,我们在这里研究了使用Den-Sity Matrix Renormal Altormal Altormation Groute Metage在本地旋转的Kondo-Heisenberg链中,遇到的J 1-J 1-J 2 xxz互动。我们的模拟揭示了具有丰富接地状态的全局相图,包括抗磁磁序,价 - 键 - 固定和键级波顺序,对密度波状态,均匀的超导状态和Luttinger液态。我们表明,两对密度波和均匀的超导性均属于路德 - emery液体的家族,并且可能是由中间量子临界相位的成对不稳定性在具有强量子流动的情况下具有中等量子的临界相,而Luttinger液体具有较大的费米体积。我们的工作提供了一个一维沮丧的近代晶格物理学的全面图片,并暗示了对密度波,非常规的超导性和非Fermi液体量子关键相之间的深厚联系。
施加拓扑操作,环绕着一个特殊点(EP),使得非常规的单向拓扑声子转移(TPT)严格取决于EP纳入控制循环的方向,并固有地限于实用谐振器的小质量。我们在这里展示了如何通过将拓扑操作与fizeau降落效应结合起来来击败这些局限性并预测无质量的单向TPT,从而拆分了相反的光学模式。当光从纤维的一个选择的一侧(而不是从另一侧)进入时,就会发生一个有效的TPT,导致独特的非重新注射TPT,而与绕EP周围的旋转方向无关。与以前对量子设备质量和质量敏感的先前提案不同,我们的方法几乎不受这些因素的影响。值得注意的是,它的绝热控制循环的阈值持续时间可以轻松缩短最佳TPT,从而产生了前示范中没有对应的顶速完美TPT。这项研究铺平了一条相当大的途径,用于利用深刻不同的手性拓扑效应,而与振动方向和装置质量无关。
抽象的光学拉力为光学操纵提供了新的自由度。通常认为,事件场的梯度不能产生远距离的光拉力。在这里,我们从理论上提出并在数值上证明了由操纵对象中的自我诱导的梯度范围造成的远程光拉力。类似于量子隧道中的潜在障碍,我们使用光子带隙设计,以获取位于光子晶体波导中的操纵物体内部的强度梯度,从而获得拉力。与通常的散射型光学拉力拉力不同,所提出的梯度 - 线方法不需要精确地消除从操纵物体中的反射。特别是,爱因斯坦 - 劳伯形式主义用于设计这种非常规的梯度力。在波导中操纵物体的光共振时,可以通过多达50倍的因素来增强力的大小,从而使其对吸收不敏感。开发的方法有助于打破散射力的局限性,以获得长距离的光学拉力,以操纵和分类纳米颗粒和其他纳米对象。使用带隙来获得拉力的发达原理也可以应用于其他类型的波浪,例如声波或水波,这对于众多应用很重要。
自主机器人有望在复杂、未知的环境中执行各种复杂的任务。然而,可用的机载计算能力和算法对实现更高水平的自主性构成了相当大的障碍,尤其是随着机器人越来越小,摩尔定律即将终结。在这里,我们认为,从昆虫智能中获得的灵感是机器人传统方法的一个有前途的替代方案,可用于实现小型移动机器人自主所需的人工智能 (AI)。昆虫智能的优势源于其资源效率(或简约性),特别是在功率和质量方面。首先,我们讨论这种简约性背后的昆虫智能的主要方面:体现、感觉运动协调和群集。然后,我们评估昆虫启发的人工智能作为其他重要机器人任务(如导航)方法的替代方案的地位,并确定其更广泛采用的道路上面临的挑战。最后,我们反思适合实现受昆虫启发的人工智能的处理器类型,从更传统的处理器(如微控制器和现场可编程门阵列)到非常规的神经形态处理器。我们认为,即使对于神经形态处理器,也不应该简单地应用现有的人工智能算法,而应该利用自然昆虫智能的见解来获得最高效的机器人自主人工智能。
许多国家在EFF中使用了各种策略,以过渡到替代能源作为开发可再生能源的解决方案。印度尼西亚是世界第二大地热能生产商。印度尼西亚的潜力在火环中,有117座活火山,给印度尼西亚高热势。研究旨在揭示和制定地热能在印度尼西亚的可再生能源的潜力,作为将来使用的替代能源。这项研究中的方法是定性和定量的。th the量化方法,这项研究将介绍来自各种组织的辅助数据,以及来自世界上地热潜力的先前研究的数据。,尽管定性方法将通过使用期刊,书籍和其他出版物来源的先前研究和文献的比较来制定许多国家的地热用法的思想。定性研究结果也将来自对印度尼西亚实施地热能源的利益相关者的深入访谈。这项研究的结果将说明地热能源作为印度尼西亚替代原油资源作为印度尼西亚主要自然资源的替代可再生能源的重要性。th是建议的资源映射,要求技术作为处理地热能的突破,直接从储层中拿走它,因为其基于其来源的非常规的分类,以及成本和利益对与消费者映射相关的经济的影响,以检测到能源对地热的早期市场变化。
基于反铁电的介电电容器因其出色的储能性能和在收集脉冲功率方面的非凡灵活性而备受关注。尽管如此,迄今为止,尚未阐明与储能过程固有耦合的原位原子级结构演化途径,以最终理解其机制。本文报道了反铁电PbZrO 3 在存储电子束照射的能量过程中的时间和原子分辨率结构相演变。通过采用最先进的负球差成像技术,本文介绍的定量透射电子显微镜研究阐明了与晶胞体积变化和极化旋转相关的极性氧八面体的层次演化解释了逐步的反铁电到铁电相变。特别是,在动态结构研究过程中建立了一种非常规的铁电类别——具有独特摆线极化序的铁电畸变相。通过阐明原子尺度相变途径,该研究的结果为探索具有非极性到极性相变的储能材料中的新型铁致畸变相开辟了一个新领域。
extended 2D Tinkham model Yue Liu, 1,2,† Yuhang Zhang, 1,2,† Zouyouwei Lu, 1,2,† Dong Li, 1,3,* Yuki M. Itahashi, 3 Zhanyi Zhao, 1,2 Jiali Liu, 1,2 Jihu Lu, 1,2 Feng Wu, 1,4 Kui Jin, 1,2,5 Hua Zhang,1 Ziyi Liu,1小居,1,2,5,** Zhongxian Zhao,1,2,5 1北京国家冷凝物质物理学实验室,物理研究所,中国科学院,中国100190,中国。2个物理科学学院,中国科学院,北京100049,中国。 3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。2个物理科学学院,中国科学院,北京100049,中国。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。5,中国广东523808的东瓜材料实验室。摘要。批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。我们进一步证明了该模型在(Li,Fe)Ohfese和cetyltrimethyl铵(CTA +) - 钙化(CTA)0.5 SNSE 2超导体中的有效性,突出了其广泛的适用性。这项工作提供了对大量2D超导性的有价值的见解,并建立了扩展的2D Tinkham模型,用于定量提取插入的分层超导体中的固有超导性能,尤其是那些表现出明显的层间未对准的超导体。†这些作者也同样贡献。*联系作者:dong.li.hs@riken.jp **联系作者:dong@iphy.ac.cn
NWO 致力于支持推动创新和解决重大社会挑战的世界一流研究。无论是基础研究、应用研究还是实践研究,科学在塑造更美好的未来中都发挥着至关重要的作用。通过创造力和毅力,研究人员不断突破知识的界限,开启新的可能性。NWO 应用与工程科学领域 (AES) 致力于推动技术科学研究,并将其应用于造福人类和社会。AES 涵盖各个学科的应用和工程科学领域。我们很高兴地宣布开放思维 2025 征集提案,自 2015 年启动以来,我们已经支持了 10 年的原创和非常规研究想法。今年,我们更加重视大胆、高风险、高收益的研究想法,这些想法有可能产生有意义和持久的影响。开放思维与开放技术计划或 Perspectief 等传统资助计划的不同之处在于它采取了一种非常规的方法:没有标准的同行评审流程,评估委员会的成员不仅仅包括科学家。相反,它融合了各种创造性思维,如科学记者、哲学家和其他具有独特观点的人。本次征集提案旨在拥抱新想法并鼓励开放思维!
一个kagome晶格自然具有其电子结构中的Dirac Fermions,Flat Band和Van Hove奇异性。Dirac Fermions编码拓扑结构,平面带偏爱相关现象,例如磁性,而Van Hove的奇异性可以导致对远程多个体型的不稳定性,从而完全可以实现和发现一系列拓扑kagome磁铁,并具有带有exotic特性的超导体。探索kagome材料的最新进展揭示了由于几何,拓扑,自旋和相关性之间的量子相互作用而产生的丰富的新兴现象。在这里,我们回顾了该领域的这些关键发展,从Kagome晶格的基本概念开始,再到Chern和Weyl拓扑磁性的实现,再到各种平坦的多体型相关性,然后再到非常规的电荷密度密度波和超导导性的难题。我们强调了理论思想和实验观察之间的联系,以及kagome磁铁和kagome超导体内的量子相互作用之间的键,以及它们与拓扑绝缘子,拓扑超导体,Weyl Semimetals和高磁性超管制的概念之间的关系。这些发展广泛地桥接了拓扑量子物理学,并将多体物理物质相关联,并在各种散装材料中与拓扑量子问题的前沿相关。