摘要。机器学习应用程序获得了越来越多的访问高度敏感的信息,同时需要越来越多的计算资源。因此,需要将这些计算昂贵的任务外包,同时仍确保数据的安全性和机密性是迫在眉睫的。在他们的开创性工作中,Tramèr和Boneh提出了激流回旋方案,用于隐私 - 通过将计算分为独立于数据的预处理阶段和非常有效的在线阶段来保存推断。在这项工作中,我们提出了一种新方法,可以通过引入狂欢节协议来显着加快预处理阶段。狂欢节利用子集总和问题的伪随机性也可以在预处理阶段实现有效的外包。除了证明安全性外,我们还包括一项经验研究,分析了针对较小参数的子集总和函数输出均匀性的格局。我们的发现表明,狂欢节是现实世界实施的绝佳候选人。
摘要口头途径是最方便的,并且在采用新化学实体方面具有很大的有效性;因此,它改善了患者的接受。但是,与此类配方相关的主要局限性涉及不愉快或苦味的味道,以及与化学实体的吞咽和降低和降低的生物利用度有关的问题。在孩子方面,主要限制是他们不能以片剂和胶囊的形式安全地吞下药物。但是,孩子,即使没有牙齿的孩子也可以轻松吞咽果冻。在为每个孩子,品味,颜色,气味,质地和外观的新剂型形式开发中,是改善患者依从性的重要因素。孩子们拒绝再次容忍同种药物,这对于试图服用药物的父母来说是一个大问题。解决此类问题的有效方法涉及儿童友好剂量配方,具有吸引人和醒目的味道,气味,颜色和质地。口服果冻最相同的特征是剂型的形式,即很容易咀嚼和溶解在唾液中,因此不需要水。此外,良好的质地和外观使吸引患者以及提高患者依从性变得容易。最重要的是,它提供了柔软而美丽的质地,不会给患者带来不适。关键字:果冻,胶凝剂,第一频道代谢,改善生物利用度。国际药品保证杂志。2024; 15(2):1023-1034。支持来源:零。利益冲突:无。国际药品保证杂志(2024); doi:10.25258/ijpqa.15.2.73如何引用本文:Komal K,Nilesh K,Vaibhav B,Rakesh A.口服果冻的表述,开发和表征以提高治疗效果。
微电子与纳米技术 Shamsuddin 研究中心 (MiNT-SRC) 是马来西亚敦胡先翁大学 (UTHM) 综合工程学院 (IIE) 下属的五个卓越中心 (CoE) 之一。该研究中心成立于 2006 年 11 月 27 日,前身为微电子与纳米技术中心 (MiNTEC),2007 年 11 月 25 日升级为研究卓越中心。MiNT-SRC 以 UTHM 董事会主席 Y.Bhg. Tan Sri Dato' Seri Ir Shamsuddin bin Abdul Kadir 的名字命名,以纪念他对 UTHM (2007-2009) 的贡献。MiNT-SRC 的目标是成为马来西亚南部微电子和纳米技术领域的领先研究中心。该研究中心由副教授 Marlia Morsin 博士领导,她从事基于纳米材料的传感器、真菌治疗和媒介控制领域的研究。此外,还有6名来自不同领域的首席研究人员,分别是Nafarizal Nayan教授(纳米等离子体处理和诊断)、Mohd Khairul Ahmad教授(纳米结构材料)、Soon Chin Fhong副教授(生物纳米技术、生物工程和物联网)、Fariza Mohamad副教授(使用电沉积的同质和异质结薄膜)、Farhanahani Mahmud副教授(医疗电子、嵌入式系统和人工智能)和Nur Hanis Hayati Hairom副教授(纳米技术、膜技术和废水处理)。这七位核心研究人员构成了MiNT-SRC研究进步的骨干。
摘要:在1950年代和1960年代,在分子生物学中,信息技术主要应用于蛋白质和DNA的分子演化,后来扩展到多个领域,例如序列比对,蛋白质结构预测和基因剪接。进入21世纪,人类基因组项目的完成标志着生物医学大数据时代的到来,为在该领域应用人工智能提供了大量数据。尤其是近年来,医学数据的持续积累已将人工智能在医疗领域的应用提升到更广泛,更实用的水平。本文简要介绍了人工智能在基因组学,蛋白质组学,转录组学,表观遗传学,药物发育和其他领域的应用。我希望这篇评论可以清楚地介绍可以应用哪些生物医学领域人工智能,并促进医生和相关学者积极使用人工智能技术来解决特定的生物医学问题。
摘要:有效但充分的探索仍然是强化学习(RL)的关键挑战,尤其是对于马尔可夫决策过程(MDP),具有巨大的动作空间。以前的方法通常涉及将原始动作空间投射到潜在空间或采用环境动作面具以减少动作的可能性。尽管如此,这些方法通常缺乏可解释性或依赖专家知识。在这项研究中,我们介绍了一种新颖的方法,用于自动降低具有离散动作空间的环境中的动作空间,同时保持可解释性。所提出的方法以双重目的学习了特定于州的面具:(1)消除对MDP最小影响的动作,以及(2)在MDP中具有相同行为后果的汇总行动。具体来说,我们介绍了一个新颖的概念,称为国家(BMA)的行动(BMA)来量化MDP内行动的行为后果,并设计一个专门的掩码模型以确保其二进制性质。至关重要的是,我们提出了一个实用的学习程序,用于培训掩模模型,利用任何RL策略收集的过渡数据。我们的方法旨在插入插件和适应所有RL策略,为了验证其有效性,将其集成到两种突出的RL算法中,即DQN和PPO。从迷宫,Atari和µRTS2获得的实验结果显示在RL学习过程中有很大的加速,并且引入方法促进了促进的性能改善。
摘要:我们提出了两种用于制造阴影面罩的方法,以将电极蒸发到纳米材料上。在第一个中,我们将商业纤维激光雕刻系统的使用与容易获得的铝箔结合在一起。此方法适用于制造50 µm线宽度和最小特征分离为20 µm的阴影面具,并且使用它来创建具有复杂图案的口罩非常简单。在第二种方法中,我们使用市售的乙烯基切割机对乙烯基模具面膜进行图案,然后使用玻璃纤维来定义电极之间的分离。使用这种方法,我们实现了分隔15 µm的良好的固定电极,但是与基于激光的电极相比,该技术在创建复杂的掩码方面的用途较小。我们通过基于MOS 2制造场效应晶体管设备来证明这些技术的潜力。我们的方法是一种具有高分辨率和准确性的阴影面膜的经济高效且易于访问的方法,使其可用于更广泛的实验室。
b'lithium-o 2(li o 2)细胞是一类引人入胜的LI金属空气电池,具有最高的理论特异性能密度(3500 WHKG 1)。[1]尽管如此,直到他们的商业化成为现实,仍然需要漫长的旅程。从物质的角度来看,已经在开发更有效的电解质方面做出了许多努力,这些电解质符合广泛的属性,例如高离子电导率或更环保的电解质。[2]从这个意义上讲,由于良好的运输特性,非挥发性,低毒性的结合,离子液体(ILS)似乎是常规易燃有机溶剂的一个很好的替代品(请注意,需要仔细分析此特性),[3] [3]非耐受性和对超氧自由基的稳定性。[4,5]李O 2电池中研究最多的离子液体是基于咪唑 - 和吡咯烷菌的[4,6 \ xe2 \ x80 \ x939]和基于氟的牛灰(即bis(trifluororomethananesulfonyllfonyl)Imiide,tffone)。[10]最近,较少使用的四烷基铵基于ILS,例如N,N,N-二乙基-N-甲基-N-(2-甲氧亚乙基)BIS(三氟甲磺酰硫磺酰基)imide([Deme] [Deme] [deme] [tfsi]),已显示出适用于这种类型的彩色彩色彩色的物体。'
Sep 3, 2020 — 贵校要求,愿意与贵校合作而在家庭中负起对敝子弟督促及管敎之责。 此致. 圣士提反书院校长台鉴. 家长/监护人签署: 家长/监护人姓名:.
第 14 章 特殊报告代码 (SRC) 和职责分配 这些报告分类仅用于人员和/或职位报告目的。a.本节所述的职责分配代码已建立,用于识别职位描述与特定 CMF 或 MOS 无直接关联的职位。这些代码允许在部队结构和库存变化方面具有更大的灵活性,允许更准确的编码以满足要求,但受到控制,通常需要获得代码批准机构的批准,然后才能在授权文件中对职位进行编码。职责分配代码包含前两位数字 00。 b.已建立特殊报告代码以识别本节所述的特殊类别的人员。特殊报告代码将用于人员报告文件中,以反映士兵的报告分类。特殊报告代码包含前两位数字 09。14-1。特殊职责分配 (00D) a。此代码 (00D) 将用于识别组织授权文件中已批准的特殊职责分配职位,并报告分配到这些职位的士兵的职责 MOS。在获得 HQDA、ODCS G-1 (DAPE-PRP) 批准之前,授权文件不会标有 SRC 00D(见表 14-2)。特殊职责职位必须满足以下标准: (1) 职责涉及一般军事技能/教育或与特定 MOS(MOS 无关紧要)不直接相关的独特特殊资格。(2) 职责需要独特的民事技能/教育或组件独特经验,这些经验未在本法规的其他地方归类为标识符。(3) 技能和知识通常无法从其他军事组织的其他岗位获得。(4) 驻地或非驻地军校课程既不适用也不适用于培训人员执行所需职责。(5) 涉及的职位数量太少,不足以建立新的 MOS 或其他职业标识符。b.识别 SRC 00D 职位的请求将转发给 ODCS G-1,收件人:DAPE-PRP,300 Army Pentagon,华盛顿特区 20310-0300,并将包括以下信息: (1) 单位识别码、命令代码和职位所在的授权文件的文件编号。(2) 段落和行号。(3) 薪级。(4) 授权数量。(5) 职位描述,包括-- (a) 职责。(1) 随员 (SQI 7) 职位。(b) 所需的最低技能和知识。(6) 与特定 MOS 无关的一般军事技能/教育或独特技能的摘要,或成功执行工作所需的民事教育/培训/经验。(7) 解释为什么不能用现有的陆军标识符编码该工作。c. 除非在初始批准时获得接受(如下文第 d 项所列),否则批准将一直有效,直到任务发生变化或 3 年(以先到者为准)。如果要求有效期超过 3 年,必须重新提交理由以供 HQDA 审查和批准继续有效。d. 批准使用 SRC 00D 的组织或任务集,无需 3 年续签要求。(2) 陆军要求/授权文件中的其他军事服务职位。(3) 伤亡和纪念事务行动中心 (CMAOC) 职位。(4) 监察长 (IG) NCO 职位。(5) 动员 TDA 中的 MOS 非重要职位。(6) 现役部队要求/授权文件中的预备役部队 MOS 00F/00G 非重要职位。(7) 国防部/陆军部信使职位。(8) 总部、信息作战 (IO) 组/营/BNFSB/BNGSB (SRC 53519Gxxx/53612Gxxx/53616Gxxx/ 63617Gxxx/53618Gxxx) 中的 MOS 非重要职位。(9) 美国陆军降落伞队 (W027AA)。
胶质母细胞瘤是最常见的恶性脑肿瘤,其特点是预后不良。它们通常被分为原发性异柠檬酸脱氢酶 1 或 2 (IDH1-2) 野生型 (wt) 胶质母细胞瘤 (GBM) 和继发性 IDH 突变型 GBM,其中 IDH wt GBM 通常与高龄和预后不良有关。最近,遗传分析已与表观遗传学研究相结合,强有力地实现了脑肿瘤(包括 GBM)的分型和亚型,并导致了新的 WHO 2021 分类。GBM 基因组和表观基因组谱影响进化、耐药性和治疗反应。然而,与其他肿瘤不同,精细的 GBM 分析与有限的治疗机会之间存在很大差距。此外,涉及胶质细胞转化的不同致癌基因和肿瘤抑制基因、癌症的异质性以及血脑屏障对药物获取的限制限制了临床进展。本综述将总结在胶质母细胞瘤中发现的更相关的基因变异,并强调它们作为潜在治疗靶点的潜在作用。