幽门螺杆菌(H. Pylori)是全球引起慢性胃粘膜感染的主要病原体。在2011年至2022年期间,幽门螺杆菌感染的全球患病率估计为43.1%,而在中国,幽门螺杆菌感染的率略高,为44.2%。幽门螺杆菌持续定殖可导致胃炎,消化性溃疡和恶性肿瘤,例如粘膜相关的淋巴组织(MALT)淋巴瘤和胃腺癌。尽管引起了宿主的强大免疫反应,但幽门螺杆菌通过调节宿主免疫而在胃粘膜中繁荣发展,尤其是通过改变先天和适应性免疫细胞的功能,并抑制了对其存活不利的毒性反应,从而对临床管理提出了挑战。幽门螺杆菌与宿主免疫防御之间的相互作用是复杂的,涉及通过修饰表面分子,操纵巨噬细胞功能以及调节T细胞反应以逃避宿主识别的,以逃避免疫监测。这篇综述分析了幽门螺杆菌的免疫病和免疫逃避机制,强调了鉴定新的治疗靶标和制定有效的治疗策略的重要性,并讨论针对幽门螺杆菌的疫苗的发展如何为消除这种感染提供新的希望。
乳腺癌是全球女性最常见的恶性肿瘤之一,其发病率在年轻人群中越来越高。近年来,耐药性已成为乳腺癌治疗的一大挑战,因此,耐药性成为当代研究的焦点,旨在寻找解决这一问题的策略。越来越多的证据表明,通过各种机制诱导铁死亡,特别是通过抑制系统 Xc -、消耗谷胱甘肽 (GSH) 和灭活谷胱甘肽过氧化物酶 4 (GPX4),在克服乳腺癌耐药性方面具有巨大潜力。预计针对铁死亡的疗法将成为逆转肿瘤耐药性的有希望的策略,为乳腺癌患者带来新的希望。本综述将探讨在乳腺癌耐药性背景下理解铁死亡的最新进展,特别强调铁死亡诱导剂和抑制剂的作用,以及铁死亡途径对克服乳腺癌耐药性的影响。
通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,通过多米尼科·蒙特萨诺(Domenico Montesano)49,80131 Naples,意大利B 891,BB生物学,化学和药物科学和技术系(RUISCEF) -Cnr, Ugo La Malfa 153, Palermo 90146, Italy D University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain and Andalusian Institute of Earth Sciences, Csic-Ugr, 18100 Armilla, Granada, Spain Fo Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive,Coral Gables 33146-0431,佛罗里达州佛罗里达州G,美国分子医学和医学生物技术部,通过塞尔吉奥·潘西尼(Sergio Pansini)5,80131 naples,意大利h意大利化学科学系,Viale Andrea Doria 6,95125 CATANIA,意大利,意大利,意大利,意大利,意大利,意大利,
入侵临界大脑结构,(c)一小部分胶质母细胞瘤干细胞(GSC)的肿瘤再生能力(2,3)。出现的结果支持以下概念:不仅成熟的GBM细胞可以被天然杀伤(NK)细胞有效地靶向(4-8)(4-8),而且它们的相关干细胞也可能非常容易受到NK细胞介导的免疫攻击(9,10)。这些先天免疫性淋巴细胞在预防许多类型的癌症的肿瘤起始和转移方面具有广泛的作用,并且它们比T细胞作为治疗操作的候选者具有明显的优势(11,12)。然而,迄今为止已研究的绝大多数肿瘤细胞具有强大的免疫防御能力,使它们能够逃避NK细胞介导的细胞毒性。这些包括破坏NK和肿瘤细胞之间受体相互作用的破坏以及免疫抑制细胞因子释放到微环境中,例如转化生长因子β(TGF-β)(13-15)。即使人们可以将NK细胞免受GBM肿瘤的反射策略的侵害,也无法消除足够数量的自我更新GSC来维持完整的反应。的确,关于GSC对体内NK细胞监测的敏感性知之甚少。因此,为了确定NK细胞在体内是否可以靶向GSC,我们设计了一项临床前研究,并使用了对原代GBM组织的单细胞分析,从接受手术的患者来确定NK细胞浸润活性肿瘤的部位的程度,以及效力的效力,它们消除了患者衍生的GSC。
口腔癌是一种高度恶性疾病,其特征是复发,转移和预后不良。自噬是在压力条件下引起的分解代谢过程,已显示在口腔癌发展和治疗中起双重作用。最近的研究已经确定,口腔上皮细胞中的自噬激活通过抑制诸如雷帕霉素(MTOR)哺乳动物靶标(MTOR)和有丝裂原活化蛋白激酶(MAPK)等关键途径来抑制癌细胞的存活,同时激活腺苷一单磷酸蛋白磷酸蛋白磷酸蛋白基因酶(AMP)。诱导自噬会促进真核起始因子4E的降解,从而减少转移并增强化学疗法,放疗和免疫疗法的效率。此外,自噬诱导可以调节肿瘤免疫微环境并增强抗肿瘤免疫力。本综述全面总结了自噬和口腔癌之间的关系,重点介绍其机制和治疗潜力,并结合常规治疗方法。虽然有希望,但尚待阐明自噬诱导剂在口腔癌治疗中的确切机制和临床应用,为未来的研究提供了新的方向,以改善治疗结果并减少复发。
在水稻培养中,半枯萎和粘性质地的特征分别是优化产量潜力和晶粒质量的关键。Xiangdaowan(XDW)大米以其出色的芳香特性而闻名,由于其高的身材和高淀粉糖含量而面临挑战,导致住宿耐药性不佳和次优烹饪属性。为了解决这些问题,我们采用了CRISPR/CAS9技术来精确地编辑XDW大米中的SD1和WX基因,从而发展具有所需半昏迷和麸质特征的稳定的遗传纯合线。SD1-WX突变型线表现出降低的gibberellin含量,植物高度和淀粉糖含量,同时保持了几乎不会改变发芽率和其他关键的农艺性状。重要的是,我们的研究表明,外源性GA 3的应用通过补偿内源性Gibberellin的缺乏有效地促进了生长。基于此,开发了半昏昏欲睡的精英大米(Oryza sativa L.)线,对大多数农艺性状没有太大影响。此外,比较转录组分析揭示了差异表达的基因(DEG)主要与膜的锚定成分,过氧化氢分解代谢酶分解代谢酶活性,过氧化物酶活性,萜烯合酶活性和寄生虫相关。此外,将二萜类化合物的生物合成催化为gibberellins的生物合成富集并显着下调。这项全面的研究提供了一种有效的方法,可以同时提高水稻植物的身高和质量,为耐药和高质量的水稻品种的发展铺平了道路。
摘要:靶向放射性核素治疗 (TRT) 的概念是准确有效地将辐射传送到播散性癌症病变,同时最大限度地减少对健康组织和器官的损害。成功开发用于 TRT 的新型放射性药物的关键方面是:i) 识别和表征癌细胞上表达的合适靶点;ii) 选择对癌细胞相关靶点表现出高亲和力和选择性的化学或生物分子;iii) 选择衰变特性与靶向分子特性和临床目的相符的放射性核素。瑞士保罗谢勒研究所的放射性药物科学中心 (CRS) 享有优越的地理位置,靠近独特的放射性核素生产基础设施(高能加速器和中子源),并可使用 C/B 型实验室,包括临床前、核成像设备和瑞士医药认证实验室,用于制备供人类使用的药物样品。这些有利条件允许生产非标准放射性核素,探索其生化和药理学特征以及对肿瘤治疗和诊断的影响,同时研究和表征新的靶向结构并优化这些方面以进行放射性药物的转化研究。通过与瑞士各临床合作伙伴的密切合作,最有前途的候选药物被转化为临床用于“首次人体”研究。本文通过介绍一些选定的项目,概述了 CRS 在 TRT 领域的研究活动。
白质消失 (VWM) 是一种由 eIF2B 亚基隐性变异引起的白质营养不良。目前,尚无治愈性治疗方法,患者常常英年早逝。由于其单基因特性,VWM 是开发 CRISPR/Cas9 介导的基因治疗的有希望的候选对象。在这里,我们在 VWM 小鼠中测试了一种双 AAV 方法,该方法编码 CRISPR/Cas9 和 DNA 供体模板以纠正 Eif2b5 中的致病变异。我们进行了测序分析以评估基因纠正率,并检查了对 VWM 表型(包括运动行为)的影响。序列分析表明,在目标基因座处超过 90% 的 CRISPR/Cas9 诱导的编辑是插入或缺失 (indel) 突变,而不是通过同源定向修复从 DNA 供体模板进行的精确校正。大约一半的 CRISPR/Cas9 治疗动物过早死亡。 VWM 小鼠在 7 个月大时运动技能、体重或神经系统评分均未改善,而 CRISPR/Cas9 处理的对照组则表现出诱导的 VWM 表型。总之,CRISPR/Cas9 在 Eif2b5 基因座处诱导的 DNA 双链断裂 (DSB) 未导致 VWM 变异的充分校正。此外,Eif2b5 中的插入/缺失形成会加剧 VWM 表型。因此,DSB 独立的策略(如碱基编辑或主要编辑)可能更适合 VWM 校正。
- 超过 3,000 个单独的 RAS 和 RAS 通路质粒 - 180 个基因中每个基因至少有 1 个请求 - 21 个完整的 RAS 通路试剂盒(每个试剂盒含 360 个质粒) - 23 个完整的 RAS 突变体试剂盒(每个试剂盒含 61 个质粒)
