fi g u r e 2通过mRNA-LNP AIT调节细胞因子和抗体反应。(a)BALF中IFNγ,IL-4,IL-5和IL-17A的水平; (B – E)在脾细胞上清液中IL-5,IL-4,IFNγIL-17A的水平,用PDP1或DER P 2恢复(PA:增殖测定); (f,g)在免疫前血清或血清中的der p 1-和d p 2特异性IgE水平(OD 450nm,1/10血清稀释时的OD 450nm)或苏敏化,后征和挑战后出血中的血清中。n = 25对于后敏化水平,其他时间点n = 5; (h – i)在接种后,疫苗接种后和挑战后时间点处的PDP1-和DER P 2特异性IgG1和IgG2A抗体滴度。在幼稚小鼠的血清中未检测到特定的抗体(数据未显示)。显示了两个类似实验的代表。p值是在Mann Whitney T检验或单向方差分析中计算的,*P <.05,** P <.01,*** p <.001,**** p <.0001。 mRNA HDM H或L:以10μg/10μg或1μg/1μg剂量的PDP1-DP2K96A mRNA-LNP混合; mRNA CONT H或L:荧光素酶mRNA-LNP在20或2μg剂量下;过敏:没有AIT(PBS)。
我们在血清中发现了 2,298 种脂质特征。其中,72 种(3.13%)在 ALL 儿童患者中与健康对照者有显著差异。值得注意的是,鞘脂(神经酰胺和鞘磷脂)和磷脂表现出最明显的变化。神经酰胺的靶向分析显示,ALL 儿童患者血清中的 Cer 18:0 和 Cer 20:0 水平显著升高。此外,肠道微生物相关脂质(如磺基脂质和羟基脂肪酸的脂肪酸酯)显示出显著改变。代谢组学分析确定了 15 种差异代谢物,表明核苷酸和氨基酸代谢紊乱。此外,失调的脂质和代谢物与各种血液指标相关,神经酰胺和核苷与白细胞计数呈正相关,但与血红蛋白和血小板呈负相关。
膜脂质组成和组织的调节目前正在作为针对各种疾病(包括癌症)的有效治疗策略发展。这个场被称为膜脂质疗法,已经从脂质复杂组织以及质膜中脂质和蛋白质之间的新发现中升起。膜微区域已被公认为是参与调节细胞内信号传导,细胞凋亡,氧化还原平衡和免疫反应的蛋白质受体的重要浓缩平台。健康细胞和肿瘤细胞的细胞膜之间脂质组成的差异使基于靶向癌细胞中膜脂质的新疗法开发,以提高对化学治疗剂的敏感性,从而击败多药耐药性。在当前的手稿策略中,基于影响的胆固醇/鞘脂含量的含量将与创新的含量一起呈现,更加集中于改变膜双层的生物物理特性,而不会影响其成分的组成。
来自:1 贝勒医学院物理医学与康复系,德克萨斯州休斯顿;2 纽约长老会哥伦比亚与康奈尔医院康复与再生医学系,纽约州纽约市;3 匹兹堡大学医学中心麻醉系、疼痛医学分部,宾夕法尼亚州萨斯奎哈纳;4 德克萨斯大学圣安东尼奥健康科学中心物理医学与康复系,德克萨斯州圣安东尼奥;5 托马斯杰斐逊大学莫斯康复与西德尼金梅尔医学院康复医学系,宾夕法尼亚州费城;6 梅奥诊所麻醉学与围手术期医学系、疼痛医学分部,明尼苏达州罗切斯特;7 麦戈文医学院和 Cy Pain and Spine PLLC 物理医学与康复系,德克萨斯州休斯顿; 8 威斯康星大学医学与公共卫生学院麻醉系、疼痛医学科,威斯康星州麦迪逊
随着被忽视的热带疾病利什曼病在全球范围的蔓延,再加上治疗方法有限,且这些治疗方法都存在耐药性、成本、毒性和/或给药问题,在病原昆虫媒介原生动物利什曼原虫中验证新药物靶点比以往任何时候都更加重要。在 2015 年引入 CRISPR Cas9 技术之前,新靶点的基因验证主要通过同源重组进行靶向基因敲除,其中大多数靶向基因(约 70%)被视为非必需基因。在本研究中,我们利用现成的全基因组测序技术重新分析了这些历史细胞系之一,即 L. major 敲除丝氨酸棕榈酰转移酶 (LCB2) 催化亚基,这会导致鞘脂生物合成完全丧失,但仍具有活力和感染性。结果发现了许多单核苷酸多态性,但也揭示了几个编码区的完全丢失,包括一个编码假定的 ABC3A 直系同源物(假定的固醇转运蛋白)的基因。假设这种转运蛋白的缺失可能促进了 LCB2 催化亚基的定向敲除和从头鞘脂生物合成的完全丧失,我们重新检查了 L. mexicana 品系中的 LCB2,该品系经过工程改造,可直接通过 CRISPR Cas9 定向操作。令人惊讶的是,LCB2 无法被敲除,表明其是必需的。然而,同时删除 LCB2 和假定的 ABC3A 是可能的。这表明假定的 ABC3A 的缺失促进了利什曼原虫中鞘脂生物合成的丧失,并表明我们应该重新检查许多其他基因被视为非必需的利什曼原虫敲除品系。
摘要 脂筏通过在细胞表面有序的微区中组织通路成分来调节细胞代谢和信号通路的启动。脂筏调节的细胞反应范围从生理性到病理性,针对“病理性”脂筏的治疗方法的成功取决于治疗剂识别它们并破坏病理性脂筏而不影响正常的脂筏依赖性细胞功能的能力。在本文中,作为脂筏生物学专题综述系列的总结,我们回顾了当前针对病理性脂筏的实验性疗法,包括炎症筏和富含凋亡信号分子的脂筏簇的例子。矫正方法包括使用 HDL 及其类似物、LXR 激动剂、ABCA1 过表达和环糊精调节胆固醇和鞘脂代谢以及膜运输,以及使用 apoA-I 结合蛋白进行更有针对性的干预。其中,我们重点介绍了当受体二聚化发生在病理性脂筏中时,仅以同型或异型二聚体的活化形式靶向炎症受体的拮抗剂的设计。其他疗法旨在促进脂筏依赖性生理功能,例如增强小窝依赖性组织修复。
脂肪酸的简介,分类,命名法,结构和特性。饱和和不饱和脂肪酸。必需脂肪酸,化学特性和脂肪的表征 - 水解,皂化值,雷克特 - 梅塞尔数,碘数,脂肪的酸味,脂肪的酸味,三酰基甘油和胆固醇,磷脂和鞘脂的结构和功能。前列腺素和类固醇激素的合成。
脂肽具有化学农药的有希望的替代品,用于植物生物防治目的。我们的研究通过检查它们与脂质膜的相互作用,探讨了脂肽表面蛋白(SRF)和富霉素(FGC)的独特植物生物防治活性。我们的研究表明,FGC具有直接的拮抗活性,对辣椒粉,并且在拟南芥中没有明显的免疫吸收活性,而SRF仅表现出刺激植物免疫力的能力。它还揭示了SRF和FGC对膜完整性和脂质堆积的影响。SRF主要影响膜的物理状态,而没有明显的膜通透性,而FGC透化膜而不会显着影响脂质堆积。从我们的结果中,我们可以提出脂肽的直接拮抗活性与它们透化脂质膜的能力有关,而刺激植物免疫的能力更可能是它们改变膜的机械性能的能力。我们的工作还探讨了膜脂质成分如何调节SRF和FGC的活动。固醇对两种脂肽的活性产生负面影响,而鞘脂会减轻对膜脂质填料的影响,但会增强膜泄漏。总而言之,我们的发现强调了考虑膜脂质填料和泄漏机制在预测脂肽的生物学作用中的重要性。它还阐明了膜组成与脂肽的有效性之间的复杂相互作用,从而提供了靶向生物控制剂设计的见解。