摘要。背景/目的:转移性黑色素瘤患者的治疗选择有限,诊断也较差。因此,治疗的发展需要一种新的治疗方法,其中可以提出使用 rAAV 载体进行基因治疗。本研究的目的是检查 rAAV 载体在体外和体内转导小鼠黑色素瘤细胞的效率。材料和方法:实验中使用了在鸡 β-肌动蛋白和巨细胞病毒启动子的控制下编码 GFP 的不同 rAAV 血清型。使用定量 PCR 和免疫组织化学染色测试了 rAAV 载体的鼻内、腹膜内、静脉内和肿瘤内给药途径。结果:在鼻内给药 10 10 gc/0.03 ml 剂量的 rAAV/DJ-CAG 7 天后,在体内转移性细胞中观察到最高的转导效率。结论:基于 rAAV 载体的黑色素瘤基因治疗是一种可能的治疗选择。黑色素瘤是一种源自色素细胞(黑色素细胞)的肿瘤,黑色素细胞从外皮的神经组织中发展而来。黑色素瘤最常见的起点是皮肤,但也可能形成于胃肠道粘膜或眼球内。这是一种具有高转移潜力的癌症(1,2)。尽管抗癌治疗取得了进展,但因黑色素瘤导致的死亡人数仍然
靶向药物的出现给晚期肝癌患者带来了希望,但由于人体内环境复杂多样,靶向药物的整体反应率并不高,因此如何高效地将靶向药物递送至肿瘤部位是当前研究的一大挑战。本项目拟构建负载Sora的mPEG-PLGA纳米粒并将其与外泌体包裹用于肝细胞癌的靶向治疗。采用透析法制备mPEG-PLGA载药纳米粒,并通过TEM和DLS对其进行表征。将得到的纳米粒与肝癌细胞外泌体共孵育,在脉冲超声条件下得到外泌体包裹的载药纳米粒(Exo-Sora-NPs),并通过Western blot、透射电子显微镜(TEM)和动态光散射(DLS)对其进行表征。 CCK-8实验检测Exo-Sora-NPs对肝癌细胞的毒性作用;用共聚焦显微镜检测肝癌细胞对纳米粒子的摄取效率;建立H22肝癌皮下移植瘤模型后,通过肝癌组织冰冻切片,用共聚焦显微镜观察纳米药物在肝癌组织中的蓄积和浸润深度;给药后测量小鼠肿瘤大小、体质量、病理及血清学分析。外泌体包裹的mPEG-PLGA聚合物载药粒子具有良好的靶向性和生物安全性,在一定程度上能够以较小的全身反应将药物靶向至肿瘤部位,并对肿瘤有高效的杀伤作用,外泌体包裹的纳米载药粒子作为药物载体具有很大的潜力。
07:30 – 08:30 Registration & Continental Breakfast 08:30 – 08:40 Highlights Day 2 08:40 – 09:30 Stem-cells versus Exosome 09:30 – 10:30 Stem-cell derived Exosomes in Aesthetic Medicine 10:30 – 11:00 COFFEE BREAK 11:00 – 12:00 Exosomes: Hybrid Aesthetic Drug Delivery Mechanism 12:00 – 13:00 LUNCH 13:00 – 13:45 Exosomes: Clinical complications 13:45 – 14:30 Current Limitations, Regulation and Ethical Concerns 14:30 – 15:00 Exosome Theory Test: Fundamental 15:00 – 15:30 COFFEE BREAK 15:30 – 16:30 LIVE Demo Exo-Application 2 16:30 – 17:30 HANDS-ON Exo-Application 2 17:30 – 18:00 Round Table Day 2 Review & Certification
1981年,Trams等。 通过透射电子显微镜发现了一组直径为40-1000 nm的囊泡样结构[1]。 后来,Johnstone等。 在网状细胞成熟过程中鉴定出类似囊泡样的结构,并通过以100,000×g的超速离心为90分钟将这些膜结合的囊泡从绵羊网状细胞中分离出来。 首次将这些囊泡样结构命名为外泌体[2,3]。 但是,当时,外泌体的发现并没有得到太多的关注,因为这些囊泡被认为仅仅是从成熟的红细胞中浪费的产物。 这些囊泡直到最近才被表征为膜结合的细胞外囊泡,在细胞膜与细胞内多囊体(MVBS)融合后通过胞吞作用释放出来[4,5]。 外泌体现在在所有体液和组织中都广泛发现,包括血液[6],尿液[7],母乳[8],羊膜/滑膜/腹水液[9],唾液[10]和脂肪组织[11]。 越来越多的类型的1981年,Trams等。通过透射电子显微镜发现了一组直径为40-1000 nm的囊泡样结构[1]。后来,Johnstone等。在网状细胞成熟过程中鉴定出类似囊泡样的结构,并通过以100,000×g的超速离心为90分钟将这些膜结合的囊泡从绵羊网状细胞中分离出来。首次将这些囊泡样结构命名为外泌体[2,3]。但是,当时,外泌体的发现并没有得到太多的关注,因为这些囊泡被认为仅仅是从成熟的红细胞中浪费的产物。这些囊泡直到最近才被表征为膜结合的细胞外囊泡,在细胞膜与细胞内多囊体(MVBS)融合后通过胞吞作用释放出来[4,5]。外泌体现在在所有体液和组织中都广泛发现,包括血液[6],尿液[7],母乳[8],羊膜/滑膜/腹水液[9],唾液[10]和脂肪组织[11]。越来越多的类型的
是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)预印版本的版权所有者发布于2021年9月16日。 https://doi.org/10.1101/2021.03.09.21253241 doi:medrxiv Preprint
结直肠癌 (CRC) 是世界第三大癌症,转移性 CRC 大大增加了全球癌症相关的死亡人数。转移涉及许多在分子水平上受到严格控制的复杂机制,而转移是 CRC 患者死亡的主要原因。最近,人们已经清楚,外泌体(由非肿瘤细胞和肿瘤细胞释放的细胞外小囊泡)在肿瘤微环境 (TME) 中起着关键的通讯介质作用。为了促进 TME 和癌细胞之间的通讯,非编码 RNA (ncRNA) 起着至关重要的作用,被认为是基因表达和细胞过程(如转移和耐药性)的有效调节剂。NcRNA 现在被认为是基因表达和许多癌症标志(包括转移)的有效调节剂。外泌体 ncRNA,如 miRNA、circRNA 和 lncRNA,已被证明会影响多种导致 CRC 转移的细胞机制。然而,将外泌体 ncRNA 与 CRC 转移联系起来的分子机制尚不清楚。本综述重点介绍了外泌体 ncRNA 在 CRC 转移性疾病进展中发挥的重要作用,并探讨了 CRC 转移患者可以选择的治疗方案。然而,外泌体 ncRNA 治疗策略开发仍处于早期阶段;因此,需要进一步研究以改进给药方法并找到新的治疗靶点,以及在临床前和临床环境中确认这些疗法的有效性和安全性。
但是,该领域的进步速度并不像医生的希望和梦想那样高(4)。近年来,再生医学中有两种主要方法:使用干细胞与使用外泌体的使用(2)。同时,再生医学在麻醉领域有很多话要说,尤其是在与外泌体有关的领域。有趣的观点是,麻醉药对外泌体和外泌体作用,在麻醉药物的性质以及麻醉药的有益或潜在有害作用中都可以发挥多种作用(5)。在这些作用中,以下是较大的个体研究的样本,这些样本已经打开了有关外泌体在麻醉学和围手术期间的作用的出色窗口心脏细胞的分子保护(6)血浆外泌体在
PD-1/PD-L1信号是肿瘤微环境局部免疫抑制的关键因素。针对PD-1/PD-L1信号的免疫检查点抑制剂在临床上取得了巨大的成功。然而,有几种癌症对抗PD-1/PD-L1治疗特别具有抵抗力。最近,一系列研究报道,IFN-γ可以刺激癌细胞释放外泌体PD-L1(exoPD-L1),其具有抑制抗癌免疫反应的能力并与抗PD-1反应相关。在本综述中,我们介绍了PD-1/PD-L1信号,包括所谓的“反向信号”。此外,我们总结了癌症的免疫治疗,并更加关注针对PD-1/PD-L1信号的免疫检查点抑制剂。此外,我们回顾了exoPD-L1的作用机制和调控。我们还介绍了exoPD-L1作为生物标志物的功能。最后,我们回顾了分析和量化 exoPD-L1 的方法、针对 exoPD-L1 增强免疫治疗的治疗策略以及 exoPD-L1 在癌症之外的作用。这篇全面的综述深入探讨了 exoPD-L1 的最新进展,所有这些发现都表明 exoPD-L1 在癌症和其他领域都发挥着重要作用。
摘要:收养T细胞免疫疗法,特别是嵌合抗原受体T细胞(CAR-T),在血液学恶性肿瘤治疗中表现出了有希望的治疗功效。已经进行了有关CAR-T疗法的广泛研究,已经出现了各种挑战,这些挑战极大地阻碍了其临床应用,包括肿瘤复发,CAR-T细胞耗尽和细胞因子释放综合征(CRS)。为了克服临床治疗中CAR-T疗法的障碍,已经开发了基于CAR-T细胞的外泌体的无细胞的新兴疗法已开发为有效且有希望的替代方法。在这篇综述中,我们提出了用于治疗肿瘤的基于CAR-T细胞的疗法,包括CAR-T疗法的特征和益处,该领域中存在的局限性以及为克服它们所采取的措施。此外,我们讨论了利用肿瘤治疗中从CAR-T细胞中释放出的外泌体的显着好处,并预测临床试验中的潜在问题。最后,从先前对CAR-T细胞外泌体的研究以及外泌体特征的研究中,我们提出了克服这些限制的策略。此外,审查还讨论了外泌体大规模制备中的困境,并为将来的临床应用提供了潜在的解决方案。关键字:肿瘤,CAR-T细胞,免疫逃脱,外部
败血症被定义为威胁生命的器官功能障碍,由失调的宿主免疫和炎症反应引起(1)。这是重症监护病房发病和死亡率的常见和主要原因。尽管重症监护的进展,败血症的全球发病率为每年1800万例,严重败血症的死亡率在30%至50%(2,3)。迄今为止,尚无据报道的特定批准来治疗败血症。因此,有效的治疗方案仍然难以捉摸。巨噬细胞在调节败血症中宿主的免疫平衡和炎症反应中起着至关重要的作用。响应在炎症微环境中盛行的刺激时,巨噬细胞可以分别向亲启动的M1或抗炎性M2表型变化。M1巨噬细胞表现出强大的炎症反应,并能够杀死病原体,而M2巨噬细胞促进了组织修复和分辨率的炎症(4、5)。在败血症中,M1巨噬细胞过度激活和M2巨噬细胞的激活不足,从而导致持续的炎症反应和组织损伤(6,7)。因此,研究巨噬细胞极化的调节,尤其是促进M2巨噬细胞极化的新的治疗策略,是败血症治疗的研究价值。间充质干细胞(MSC)已被证明具有免疫调节和组织再生能力,并且在许多炎症性疾病中已成为一种有希望的治疗方法(8、9)。然而,MSC移植的安全性和免疫学排斥限制了其临床应用(10,11)。目前,增加数据表明MSC创建了一种最佳的微环境,以通过旁分泌机制减少洪水量,并且在此过程中外泌体至关重要