1生物学,生态与地球科学系,卡拉布里亚大学,意大利列德,2个生物学与环境科学与工程系(BESE),阿卜杜拉国王科学技术大学(KAUST),瑟瓦尔,沙特阿拉伯,瑟瓦尔,阿拉伯,3 sdaia-kaust excell of Date Science and Artopi Intelligence, Thuwal, Saudi Arabia, 4 Institute of Chemical Biology, Ilia State University, TBBI, Georgia, 5 Scientific Direction, IRCCS INRCA, Ancona, Italy, 6 Diabetology Unit, IRCCS INRCA, Ancona, Italy, 7 Unit of Geriatric Medicine, IRCCS Inca, Cosenza, Cosenza, Cosenza,意大利,加拉布里亚大学药学,健康和营养科学系8号,意大利列德尔大学,临床与分子科学系9 IRCCS INRCA,意大利Ancona,12号医学与外科科学系,博洛尼亚大学,博洛尼亚大学,意大利,意大利,13个总方向,IRCCS INRCA,ANCONA,意大利,意大利Ancona,14实验室和精密医学诊所,IRCCS INRCA,IRCCS INRCA,ANCONA,ANCONA,ANCONA,意大利,意大利> >1生物学,生态与地球科学系,卡拉布里亚大学,意大利列德,2个生物学与环境科学与工程系(BESE),阿卜杜拉国王科学技术大学(KAUST),瑟瓦尔,沙特阿拉伯,瑟瓦尔,阿拉伯,3 sdaia-kaust excell of Date Science and Artopi Intelligence, Thuwal, Saudi Arabia, 4 Institute of Chemical Biology, Ilia State University, TBBI, Georgia, 5 Scientific Direction, IRCCS INRCA, Ancona, Italy, 6 Diabetology Unit, IRCCS INRCA, Ancona, Italy, 7 Unit of Geriatric Medicine, IRCCS Inca, Cosenza, Cosenza, Cosenza,意大利,加拉布里亚大学药学,健康和营养科学系8号,意大利列德尔大学,临床与分子科学系9 IRCCS INRCA,意大利Ancona,12号医学与外科科学系,博洛尼亚大学,博洛尼亚大学,意大利,意大利,13个总方向,IRCCS INRCA,ANCONA,意大利,意大利Ancona,14实验室和精密医学诊所,IRCCS INRCA,IRCCS INRCA,ANCONA,ANCONA,ANCONA,意大利,意大利> >
近来,使用机器学习模型和技术预测经济变量的情况越来越多,其动机是它们比线性模型具有更好的性能。尽管线性模型具有相当大的解释能力的优势,但近年来,人们加大了努力,使机器学习模型更具解释性。本文进行了测试,以确定基于机器学习算法的模型在预测非正规经济规模方面是否比线性模型具有更好的性能。本文还探讨了机器学习模型检测到的最重要的这种规模的决定因素是否与文献中基于传统线性模型检测到的因素相同。为此,从 2004 年到 2014 年,收集并处理了 122 个国家的观测数据。接下来,使用 11 个模型(四个线性模型和七个基于机器学习算法的模型)来预测这些国家非正规经济的规模。使用 Shapley 值计算了预测变量在确定机器学习算法产生的结果中的相对重要性。结果表明:(i)基于机器学习算法的模型比线性模型具有更好的预测性能;(ii)通过 Shapley 值检测到的主要决定因素与文献中使用传统线性模型检测到的主要决定因素一致。
方法:组装了255名被诊断为晚期G/ GEJ腺癌的成年患者的数据集。将影响整体生存(OS)至显着程度的IRAE识别为候选变量,并将其整合为候选变量,以及其他12个候选变量。These included gender, age, Eastern cooperative oncology group performance status (ECOG PS) score, tumor stage, human epidermal growth factor receptor 2 (HER2) expression status, presence of peritoneal and liver metastases, year and line of anti-PD-1 treatment, neutrophil-to-lymphocyte ratio (NLR), controlling nutritional status (CONUT) score, and Charlson comorbidity index (CCI)。为了减轻与伊拉斯有关的时机偏见,采用了具有里程碑意义的分析。使用最小绝对收缩和选择算子(LASSO)回归进行了变量选择以查明明显的预测因子,并应用了方差障碍因子来解决多重共线性。随后,使用正向似然比方法进行了COX回归分析来开发生存预测模型,排除未能满足比例危害(PH)假设的变量。该模型是使用整个数据集开发的,然后通过Bootstrap重新采样进行内部验证,并通过另一家医院的同类进行外部验证。此外,创建了一个列图来描述预测模型。
来源:May 等人(2018 年):用于公用事业能源存储的铅电池; Diouf 等人(2015 年):锂离子电池在可再生能源中的潜力;赵等(2015):风电并网支撑储能系统综述; IKT(2015),概要:锂离子电池;自己的评估
AI 代理将变得越来越主动,无缝集成到专业和个人环境中。AI 代理将从用户的行为中学习,以预测需求、处理复杂任务(如财务规划),甚至协助创意项目。
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
由于开发新化合物并确定其性能是昂贵且可能危险的,因此有必要开发一个模型来预测分子特性,而无需合成和实验测试。表示化合物的两种系统方法是通过分子结构的示意图和简化的分子输入线 - 进入系统(Smiles)。在这项研究中,这些表示分别用于训练两个神经网络模型,一个卷积神经网络(CNN)和一个经常性神经网络(RNN),以预测化合物的熔点。通过将化合物表示为结构的图像,CNN在拟合给定数据的拟合时不成功,似乎在给定数据的平均熔点附近保持恒定。然而,通过将化合物表示为系统生成的文本字符串,RNN成功地拟合了数据,总体趋势类似于实际趋势,平均绝对误差较低。但是,与结构图数据不同,用于RNN的微笑数据不包含方向信息。对于将来的研究,可能可以将两种表示形式结合起来,以达到更准确的预测模型。
摘要 - 全球计算机视觉的加速发展对水果收获的估计产生了重大影响,从而提高了效率并大大减少了食物浪费。此外,这项技术在农业部门面临着显着的抵抗力和缺乏知识。本综述的目的是分析人工视力方法在预测高茎果的收获时。因此,应用了非实验性描述性设计,属于无荟萃分析的系统综述。基于定义的标准(包含和排除),从电子数据库Scopus,Scielo和Redalyc中选择了26篇开放访问文章,这些文章涉及使用VA来预测高茎水果的收获。的发现表明,大多数研究使用近红外(NIR)光谱和RGB图像处理来估计收获,分别达到95%(柑橘类水果)和75%(苹果)的平均准确性。此外,使用RGB和YOLOV3图像传感器的无人机的使用使得获得大于90%的精确度成为可能,从而实现了收获前4到6个月之间的预测。得出结论是,使用最常用的VA方法是RGB图像传感器,光谱法(NIR),无人驾驶飞机(UAV)和Yolov3,它们在预测高茎果实的成熟方面的准确性大于75%。该方法的选择将主要取决于您是要分析果实的内部还是外部部分,因此,重要的是要识别高茎果实在其生长阶段的色素沉着的变化。
i naveenrangasamy b then削弱了我在我在我的指导下,题为“使用python中使用数据科学的糖尿病预测”。在Sathyabama科学技术学院,一部分履行了
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
