摘要 - 全球计算机视觉的加速发展对水果收获的估计产生了重大影响,从而提高了效率并大大减少了食物浪费。此外,这项技术在农业部门面临着显着的抵抗力和缺乏知识。本综述的目的是分析人工视力方法在预测高茎果的收获时。因此,应用了非实验性描述性设计,属于无荟萃分析的系统综述。基于定义的标准(包含和排除),从电子数据库Scopus,Scielo和Redalyc中选择了26篇开放访问文章,这些文章涉及使用VA来预测高茎水果的收获。的发现表明,大多数研究使用近红外(NIR)光谱和RGB图像处理来估计收获,分别达到95%(柑橘类水果)和75%(苹果)的平均准确性。此外,使用RGB和YOLOV3图像传感器的无人机的使用使得获得大于90%的精确度成为可能,从而实现了收获前4到6个月之间的预测。得出结论是,使用最常用的VA方法是RGB图像传感器,光谱法(NIR),无人驾驶飞机(UAV)和Yolov3,它们在预测高茎果实的成熟方面的准确性大于75%。该方法的选择将主要取决于您是要分析果实的内部还是外部部分,因此,重要的是要识别高茎果实在其生长阶段的色素沉着的变化。
主要关键词