摘要 - 史塔迪此案例研究人员讨论了使用OpenCV和Python对猫和狗图像进行分类的计算机视觉实施。进行此案例研究的目的是能够开发一个可以区分高准确性的猫和狗图像的分类模型。该过程始于从猫和狗的图片中收集数据集,然后对其进行处理以提高图像的质量。数据增强技术将应用于扩展数据集变化并改善模型性能。卷积神经网络(CNN)算法用作分类模型的基础。CNN模型是使用已通过交叉验证处理和验证的数据集训练的,以避免过度拟合。OPENCV用于处理基本图像操作,例如调整大小,颜色转换和数据增强,而深度学习框架(例如用于构建和训练CNN模型的张力流)等深度学习框架。实验结果将表明,CNN模型可以实现能够在分类猫和狗的图像时达到令人满意的准确性。
主要关键词