摘要算法偏见是教育环境中机器学习模型中的主要问题。但是,它尚未在亚洲学习环境中进行彻底研究,并且只有有限的工作才考虑了基于区域(亚国家)背景的算法偏见。作为解决这一差距的一步,本文研究了菲律宾一所大型大学的5,986名学生的人口,并根据学生的区域背景调查了算法偏见。大学在广泛领域的在线课程中使用了画布学习管理系统(LMS)。在三个学期的典范上,我们收集了4870万个学生在画布中活动的日志记录。我们使用这些日志来训练从LMS活动中预测学生成绩的二进制分类模型。表现最佳的模型达到0.75,加权F1得分为0.79。随后,我们根据学生区域检查了偏见的数据。使用三个指标进行评估:AUC,加权F1得分和MADD在所有人口组中均显示出一致的结果。因此,在年级预测中对特定学生群体没有观察到不公平。
GTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAAC CACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCC GATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGG gcagtgagcgcaaCgCaAttaatgtGagtCactcactCattaggCa ccccaggctttaCactttatTattatGcttcggttcggtcgtcgtgtgtgtgtgtgtggaattggagcggcggcggcggcggcggcggcggataactaacttcacacacacaggaaacagcatatgaccatgactgattgattgattgatta CGGATTCACTGGCCGTCGTTTACAACGTCGTCGTGACTGGGAAAACCCT GGCGTTACCCAACTTAATCGCCCTTGCAGCAGCAGCACATCCCCCCCCCCCCCCCCCCCCCCCCGCCGCGCGCGTGGCGCGTAATAGCCGAGCGCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCTTTCCCCCAGAG ttgcgcagcctgaAtggcgaAtggcgctttgcctggtttcggcaC cagaagcggtgcgcgcgcgcgcggaaagctggctggcgtggcgcgatgcgcgcgcgatcttcctggc cgatactgcgtcgtcgtcgtcgtcccctccctccctcatcaaactgggcagcagcagcagcacggcacggcacggcacggttacgatttacgatgttacgatgttacgatg. CGCCCATCCACAACGTGACCTATCCCATCGGTCAGCCGCG TTTGTCCCACGGAGAATCCGACGGGACGGGTTGTTACTCGCTCACATTTAAT GTTGATGATGAAAGAAGAGCTGECTGGTGCTACACAGGAGGCAGGCCAGACGCAACGCGAACGATTTTGATGA TGGCGTTAACTCGGCGTTTCATCTGTGGTGCAACGGGCGCTGGGTC GGTTACGGCCAGGACAGTCGTTTGCCGTCTGAATTTGACCTGAGCG CATTTTTACGCGCCGGAGAAAACCGCCTCGCGGTGATGGTGCTGCG ctggagtgacggcagttattctggaagatcaggatatgtggcggatg agcggcattttctcgtgtgacgtctcg……………………………………………………………………………………………………。
The UFS-R2O Project began in July 2020, and the first three years of the project (Phase I; July 2020 - June 2023) resulted in many accomplishments, leading to significant advancements in developing the FV3-based systems including the Hurricane Analysis and Forecast System (HAFS) version 1, the regional Rapid Refresh Forecast System (RRFS) version 1, the Global Forecast System (GFS) version 17 and Global Ensemble预测系统(GEFS)版本13。该项目的第二阶段(2023年7月至2026年6月)将继续发展和改善全球,区域和飓风预测系统及其数据同化,物理,大气组成,基础设施,验证以及后处理的组成部分。
▪灾难侦察报告,当上传时,它可以快速摘要和信息检索[1]。▪对于特定的知识(例如,F级规模和EF尺度之间的统计关系),需要一些上传文档的提示。3。有关天气和气候模拟大型AI模型中最新进展的全面知识,但直到2023年。
摘要 - 当今的商业格局的特点是竞争和动态,这将人力资源管理转变为组织的基本战略合作伙伴。员工营业额会带来影响生产力和知识管理的风险。本研究的重点是使用机器学习(ML)模型来预测员工的离职。在培训过程中,使用了一个由4410个记录和29个变量组成的数据集,在培训和评估十种模型的过程中,遵循了人工智能(AI)方法。调查结果表明,XG增强分类器(XGBC)和随机森林(RF)模型达到了最佳准确性和性能率,为98.8%和98.7%。Followed by Decision Tree Classifier (DT) with 97.6%, and the other models, such as Gradient Boosting Classifier (GBC), Ada boost Classifier (AC), Logistic Regression (LR), KN Classifier (K-NNC), SGD Classifier (SGDC), Support Vector Classifier (SVC) and Nu Support Vector Classifier (NuSVC), achieved the following费率:分别为88.4%,85.4%,84%,82.2%,83.0%,83.0%,55.0%。最后,可以得出结论,模型在预测中是有用且有效的。建议在人力资源管理策略中实施实际实施,以进行主动干预。
自身免疫性风湿病(ARD)提出了一个重要的全球健康挑战,其特征是患病率上升。这些高度异质性疾病涉及复杂的病理生理机制,从而导致跨个体的可变治疗效率。这种可变性强调了对个性化和精确治疗策略的需求。传统上,临床实践取决于经验治疗的选择,这通常会导致有效的疾病管理延迟,并可能对多个器官造成不可逆转的损害。这样的延误显着影响患者的生活质量和预后。人工智能(AI)最近成为风湿病学的一种变革性工具,提供了新的见解和方法。当前的研究探讨了AI在诊断疾病,分层风险,评估预后和预测ARD治疗反应方面的能力。AI中的这些发展为更精确和有针对性的治疗策略提供了潜力,从而促进了增强患者预后的乐观情绪。本文批判性地回顾了预测ARD治疗反应的最新AI进步,强调了当前的艺术状况,确定了持续的挑战,并提出了未来研究的方向。通过利用AI的能力,研究人员和临床医生准备开发更个性化和有效的干预措施,改善ARD患者的护理和结果。
改进且便宜的分子诊断允许从“一种尺寸适合所有疗法”转移到针对单个肿瘤的个性化疗法。然而,基于全面测序的大量潜在目标仍然是一个尚未解决的挑战,可以阻止其在临床实践中的常规使用。因此,我们设计了一个工作流,该工作流选择基于多摩学测序和计算机药物预测的最有希望的治疗靶标。在这项研究中,我们证明了关注膀胱癌(BLCA)的工作流程,迄今为止,尚无可靠的诊断来预测治疗方法的潜在益处。在TCGA-BLCA队列中,我们的工作流程确定了由21个基因和72种药物组成的面板,这些小组建议对95%的患者进行个性化治疗,包括5个尚未报道为BLCA临床测试的预后标记。自动化的预测是通过手动策划的数据补充的,从而可以进行准确的灵敏度或抗药性指导的药物反应预测。我们根据在手动策展期间发现的陷阱讨论了药物相互作用数据库的潜在改进。
随着当前网络平台用于在线电子商务的快速开发,除了透明的价格竞争外,买方的反馈也对消费者的购买决策也有合理的影响。今天,我们可以看到,近年来,消费者在相关网站上的反馈行为,包括著名的在线购物平台,例如亚马逊购物,Shopee Shopping和Toobao,近年来逐渐得到了增强。消费者反馈的实质性建议是否有助于其他肤浅的消费者阅读他们以改善购物习惯。在这项研究中,我们使用机器学习自动对反馈注释进行分类,并监视购物交易量的增长趋势,从而选择Shopee购物平台作为实验案例。根据评论提供的客户提供的建议已融入情感单词管理分析中,并且单词和单词分数得到了加权。最后,建造了商店销售引擎,该引擎模拟消费者的行为,使用审核管理过滤可变因素,并优化了预测消费者购物的指标。
评估心脏骤停后昏迷患者的神经功能完整性仍是一个悬而未决的挑战。昏迷结果的预测主要依赖于专家对生理信号的视觉评分,这种方法容易产生主观性,并使相当多的患者处于预后不确定的“灰色地带”。对听觉刺激后脑电图反应的定量分析可以让我们了解昏迷时的神经功能以及患者苏醒的机会。然而,由于协议繁琐多样,标准化听觉刺激后的反应还远未在临床常规中使用。在这里,我们假设卷积神经网络可以帮助提取昏迷第一天对听觉刺激的脑电图反应的可解释模式,这些模式可以预测患者苏醒的机会和 3 个月后的存活率。我们使用卷积神经网络 (CNN) 对多中心和多方案患者队列中在标准化镇静和目标体温管理下昏迷第一天对听觉刺激的单次脑电图反应进行建模,并预测 3 个月时的结果。对于接受治疗性低温和常温的患者,使用 CNN 预测觉醒的阳性预测率分别为 0.83 ± 0.04 和 0.81 ± 0.06,预测结果的曲线下面积分别为 0.69 ± 0.05 和 0.70 ± 0.05。这些结果也持续存在于处于临床“灰色地带”的一部分患者中。网络预测结果的可信度基于可解释的特征:它与脑电图反应的神经同步性和复杂性密切相关,并受到独立临床评估的调节,例如脑电图反应性、背景爆发抑制或运动反应。我们的研究结果强调了可解释的深度学习算法与听觉刺激相结合在改善昏迷结果预测方面的巨大潜力。
方法:组装了255名被诊断为晚期G/ GEJ腺癌的成年患者的数据集。将影响整体生存(OS)至显着程度的IRAE识别为候选变量,并将其整合为候选变量,以及其他12个候选变量。These included gender, age, Eastern cooperative oncology group performance status (ECOG PS) score, tumor stage, human epidermal growth factor receptor 2 (HER2) expression status, presence of peritoneal and liver metastases, year and line of anti-PD-1 treatment, neutrophil-to-lymphocyte ratio (NLR), controlling nutritional status (CONUT) score, and Charlson comorbidity index (CCI)。为了减轻与伊拉斯有关的时机偏见,采用了具有里程碑意义的分析。使用最小绝对收缩和选择算子(LASSO)回归进行了变量选择以查明明显的预测因子,并应用了方差障碍因子来解决多重共线性。随后,使用正向似然比方法进行了COX回归分析来开发生存预测模型,排除未能满足比例危害(PH)假设的变量。该模型是使用整个数据集开发的,然后通过Bootstrap重新采样进行内部验证,并通过另一家医院的同类进行外部验证。此外,创建了一个列图来描述预测模型。
