摘要 - 当今的商业格局的特点是竞争和动态,这将人力资源管理转变为组织的基本战略合作伙伴。员工营业额会带来影响生产力和知识管理的风险。本研究的重点是使用机器学习(ML)模型来预测员工的离职。在培训过程中,使用了一个由4410个记录和29个变量组成的数据集,在培训和评估十种模型的过程中,遵循了人工智能(AI)方法。调查结果表明,XG增强分类器(XGBC)和随机森林(RF)模型达到了最佳准确性和性能率,为98.8%和98.7%。Followed by Decision Tree Classifier (DT) with 97.6%, and the other models, such as Gradient Boosting Classifier (GBC), Ada boost Classifier (AC), Logistic Regression (LR), KN Classifier (K-NNC), SGD Classifier (SGDC), Support Vector Classifier (SVC) and Nu Support Vector Classifier (NuSVC), achieved the following费率:分别为88.4%,85.4%,84%,82.2%,83.0%,83.0%,55.0%。最后,可以得出结论,模型在预测中是有用且有效的。建议在人力资源管理策略中实施实际实施,以进行主动干预。
主要关键词