摘要:雷帕霉素 (mTOR) 激酶的机制靶点是促进健康和延长寿命的首要药物靶点之一。除雷帕霉素外,只有少数其他 mTOR 抑制剂被开发出来并被证明能够减缓衰老。我们使用机器学习来预测针对 mTOR 的新型小分子。我们选择了一种小分子 TKA001,基于对高靶向概率、低毒性、良好的物理化学性质和更好的 ADMET 特征的计算机预测。我们通过分子对接和分子动力学对 TKA001 结合进行了计算机建模。TKA001 在体外可有效抑制 TOR 复合物 1 和 2 信号传导。此外,TKA001 在体外可抑制人类癌细胞增殖并延长秀丽隐杆线虫的寿命,这表明 TKA001 能够在体内减缓衰老。
创伤性脑损伤(TBI)是指由外力造成的脑损伤,典型的影响很大,通常是由于汽车事故,跌倒或运动损伤等事件造成的。在2019年全球记录了超过2700万例新的TBI病例,这种类型的伤害很常见,可能会威胁生命[1]。尽管在影响时发生了主要伤害,但TBI患者面临着次要损伤的巨大风险,在初次创伤后的几个小时甚至几天内,这种损伤可能会逐渐发展[2]。这些次要侮辱与颅内压增加(ICP)有关,这是颅库内压力的危险增加。当ICP增加时,可以限制脑血流。这种限制可能导致脑缺血,其中大脑被剥夺了氧气,这是ICP升高的主要伤害作用。紧急医疗干预需要管理和减少ICP,因为ICP的未经治疗的海拔高程会导致永久性神经系统损害,昏迷甚至死亡。预防和管理次要损伤对于对TBI患者的治疗至关重要,并且通常涉及对ICP的持续监测,稳定患者的状况以及采用干预措施,例如药物,手术减压或脑脊髓液流体,以最大程度地损害进一步的损害。迅速治疗升高的ICP可以显着提高预后,并降低长期残疾的可能性[3,4]。
免疫系统中主要的组织相容性复合物(MHC)I类和II类分子的关键作用已得到很好的确定。本研究旨在开发一种新型的机器学习框架,用于通过MHC I类和II类分子预测抗原肽表现。通过整合大规模质谱数据和其他相关数据类型,我们基于深度学习提供了预测模型ONMIMHC。我们使用独立的测试集对其性能进行了严格的评估,ONMIMHC在MHC-I任务中的PR-AUC得分为0.854,Top20%-PPV为0.934,这表现优于现有方法。同样,在MHC-II预测的域中,我们的模型ONMIMHC的PR-AUC得分为0.606,TOP20%-PPV为0.690,表现出优于其他基线方法。这些结果证明了我们模型ONMIMHC在准确预测MHC-I和MHC-II分子之间的肽MHC结合后的优势。凭借其出色的准确性和预测能力,我们的模型不仅在一般的预测任务中出色,而且在预测新抗原针对特定癌症类型的新抗原方面也取得了显着的结果。特别是对于子宫菌群子宫内膜癌(UCEC),我们的模型成功地预测了新抗原,对普通人类等位基因具有很高的结合概率。这一发现对于开发针对UCEC的个性化肿瘤疫苗非常重要。
a Bash Biotech Inc,600 est Broadway,Suite 700,圣地亚哥,CA 92101,美国 b 生命科学实验室,KTH-Royal Institute of Technology,斯德哥尔摩 SE-17165,瑞典 c 病理学和肿瘤生物学系,人类生物学高级研究中心(WPI-ASHBi),京都大学,京都 606-8501,日本 d 泌尿外科,东京大学医学院,东京 113-8654,日本 e 血液学和再生医学中心,卡罗琳斯卡医学院,斯德哥尔摩 SE-17177,瑞典 f 医学生物学系,Atat € urk 大学医学院,埃尔祖鲁姆 25240,土耳其 g 宿主-微生物组相互作用中心,牙科、口腔和颅面科学学院,伦敦国王学院,伦敦 SE1 9RT,英国h 哥德堡大学萨尔格伦斯卡大学医院分子与临床医学系,哥德堡 SE- 41345,瑞典 i 查尔姆斯理工大学生物与生物工程系,哥德堡 SE-41296,瑞典 j 生物创新研究所,哥本哈根 N DK-2200,丹麦 k 郑州大学药学院先进药物制备技术教育部重点实验室,郑州 450001,中国
糖尿病微血管病是糖尿病患者的典型且严重的问题,包括糖尿病性视网膜病,糖尿病性肾病,糖尿病神经病和糖尿病性心肌病。2型糖尿病和糖尿病微血管并发症患者的不对称二甲基精氨酸(ADMA)的水平显着升高,这是一种一氧化氮合酶(NOS)的内源性抑制剂。ADMA通过其对内皮细胞功能,氧化应激损伤,炎症和纤维化的影响,促进了2型糖尿病中微血管并发症的发生和进展。本文回顾了糖尿病的ADMA和微血管并发症之间的关联,并阐明了ADMA导致这些并发症的潜在机制。它为预防和治疗2型糖尿病的微血管并发症提供了一种新的想法和方法。
3.4外部评估组(EAG)发现了1项研究,评估了Cari Heart对可疑稳定冠状动脉疾病患者的心脏死亡的预后表现(Oikonomou等人。2021)。这项研究是一项模型开发和验证研究,其中包括3,912人患有CTCA来评估稳定的冠状动脉疾病。这项研究的结果表明,比基于传统临床风险因素(吸烟,高胆固醇血症,高血压,糖尿病,公爵指数,高风险斑块特征和上心脂肪组织体积的存在)的风险模型比风险模型更好。EAG还发现了支持冠状动脉炎症与心脏不良事件风险之间联系的研究。委员会同意,根据Oikonomou等人的结果。(2021),Cari Heart可能会改善心脏死亡的风险预测。(2021),Cari Heart可能会改善心脏死亡的风险预测。
病原微生物的抗菌素耐药性 (AMR) 问题已成为全球公共卫生危机,对现代医疗保健系统构成重大威胁。人工智能 (AI) 和机器学习 (ML) 技术的出现为该领域带来了革命性的变化。这些先进的计算方法能够处理和分析大规模生物医学数据,从而揭示耐药性发展背后的复杂模式和机制。人工智能技术越来越多地用于根据基因含量和基因组组成预测病原体对各种抗生素的耐药性。本文回顾了人工智能和机器学习在预测病原微生物抗菌素耐药性方面的最新进展。我们首先概述了微生物耐药性的生物学基础及其流行病学研究。随后,我们重点介绍了用于耐药性预测的主要人工智能和机器学习模型,包括但不限于支持向量机、随机森林和深度学习网络。此外,我们探讨了该领域的主要挑战,例如数据可用性、模型可解释性和跨物种耐药性预测。最后,我们通过算法优化、数据集扩展和跨学科协作,探讨微生物耐药性研究的新视角和解决方案。随着人工智能技术的不断进步,未来我们将拥有对抗病原微生物耐药性的最有力武器。
对澳大利亚经济的外部风险也可以通过场景来审问。在任何给定时间,都有许多已知的外部风险(以及未知的未知数)。副州长安德鲁·豪瑟(Andrew Hauser)在本周早些时候的讲话中讨论了其中一个未知数,全球贸易环境。5材料外部风险的另一个当前例子是未来中国财政政策的道路。中国是一个大型经济体,也是澳大利亚最大的出口目的地,这意味着其轨迹对澳大利亚货币政策制定很重要。我们探索的一种方式是考虑中国财政支出高于预期的影响。有几种影响澳大利亚经济的方法:6
NEX-GDDP-CMIP6数据集由源自耦合模型对比计划阶段6(CMIP6)进行的一般循环模型(GCM)得出的全局降低气候场景(GCM)[Eyring等。2016]以及四个“ 1”温室气体排放场景,称为共享社会经济途径(SSP)[O'Neill等。2016; Meinshausen等。2020]。CMIP6 GCM运行是为了支持政府间气候变化小组(IPCC AR6)的第六次评估报告。此数据集包括从方案模型运行的缩小投影[O'Neill等。2016; Tebaldi等。2021]每日场景通过地球系统网格联合会产生和分布。该数据集的目的是提供一组全球,高分辨率,偏见的气候变化预测,可用于评估气候变化对对较小规模的气候梯度敏感的过程的影响以及当地地形对气候条件的影响。
