Loading...
机构名称:
¥ 1.0

多智能体轨迹预测是一项基础任务,可应用于自动驾驶、物理系统建模和智慧城市等各个领域。该任务具有挑战性,因为智能体交互和底层连续动力学共同影响其行为。现有方法通常依赖图神经网络 (GNN) 或 Transformer 来提取智能体交互特征。然而,它们往往忽略了智能体之间的距离和速度信息如何动态地影响它们的交互。此外,以前的方法使用 RNN 或一阶常微分方程 (ODE) 来模拟时间动态,这可能缺乏对每个智能体如何受交互驱动的解释性。为了应对这些挑战,本文提出了 Agent Graph ODE,这是一种显式模拟智能体交互和连续二阶动力学的新方法。我们的方法采用变分自编码器架构,在编码器模块中结合了具有距离信息的时空Transformer和动态交互图的构建。在解码器模块中,我们采用具有距离信息的GNN来建模智能体交互,并使用耦合的二阶微分方程(ODE)来捕捉底层的连续动力学,该微分方程通过建模加速度和智能体交互之间的关系来构建模型。实验结果表明,我们提出的Agent Graph ODE在预测精度方面优于最先进的方法。此外,我们的方法在训练数据集中未见的突发情况下也表现良好。

用于多智能体轨迹预测的二阶图微分方程

用于多智能体轨迹预测的二阶图微分方程PDF文件第1页

用于多智能体轨迹预测的二阶图微分方程PDF文件第2页

用于多智能体轨迹预测的二阶图微分方程PDF文件第3页

用于多智能体轨迹预测的二阶图微分方程PDF文件第4页

用于多智能体轨迹预测的二阶图微分方程PDF文件第5页

相关文件推荐

2024 年
¥7.0