使用 1/10 比例 CH-47B/C 型转子的风洞试验数据研究失速条件下的转子行为,该风洞试验提供了一组测试条件,从未失速到轻度失速到一些深度失速条件,涵盖了很宽的前进比范围。在风洞中测量的转子性能与 NASA/Army UH-60A 空气载荷计划期间测量的主转子性能相似,尽管这两个转子完全不同。分析 CAMRAD II 已用于预测转子性能和载荷。全尺寸翼型试验数据针对雷诺数效应进行了校正,以便与模型比例转子试验进行比较。计算出的功率系数与雷诺数校正翼型表的失速以下测量值显示出良好的相关性。计算中使用了各种动态失速模型。波音模型显示升力在低推进比时增加,而 Leishman-Beddoes 模型在 µ = 0.2 时显示扭矩相关性优于其他模型。然而,动态失速模型通常对转子功率和扭矩预测的影响很小,尤其是在较高的推进比下。
使用 1/10 比例 CH-47B/C 型转子的风洞试验数据研究失速条件下的转子行为,该风洞试验提供了一组测试条件,从未失速到轻度失速到一些深度失速条件,涵盖了很宽的前进比范围。在风洞中测量的转子性能与 NASA/Army UH-60A 空气载荷计划期间测量的主转子性能相似,尽管这两个转子完全不同。分析 CAMRAD II 已用于预测转子性能和载荷。全尺寸翼型试验数据针对雷诺数效应进行了校正,以便与模型比例转子试验进行比较。计算出的功率系数与雷诺数校正翼型表的失速以下测量值显示出良好的相关性。计算中使用了各种动态失速模型。波音模型显示升力在低推进比时增加,而 Leishman-Beddoes 模型在 µ = 0.2 时显示扭矩相关性优于其他模型。然而,动态失速模型通常对转子功率和扭矩预测的影响很小,尤其是在较高的推进比下。
本研究提出了一种替代(即空气辅助)系统,使用从苏-22或米格-29战斗机发射的火箭将有效载荷(微型卫星)发射到太空。本文从多个方面验证和评估了这种用于将有效载荷发射到低地球轨道(LEO)的空气辅助火箭系统。任务概况和火箭投放机动概念已经制定出来。从所采用的计算模型和模拟结果可以看出,在所考虑的配置下,上述飞机将能够完成将至少10公斤的有效载荷发射到低地球轨道的任务。这些分析与模拟和风洞试验相辅相成,验证了太空火箭可能对运载机的空气动力学和机械性能产生的影响。对空气辅助火箭发射系统模型进行的数值模拟和风洞试验结果表明,火箭对飞机的空气动力学特性及其飞行特性的影响可以忽略不计。同样,机身承重结构所经受的负载和强度测试也未显示因所附太空火箭而引起的任何重大变化或变形。拟议的套件可视为波兰武装部队所谓的响应性太空资产。实施这样的系统不仅可以使我们摆脱对提供太空服务的国家或商业公司的依赖,而且还使我们能够在部署用于安全和防御目的的卫星系统的背景下掌握新能力。
第 8 章:垂直容器的风荷载.................................................................................178 8.1 介绍...................................................................................................................178 8.2 实验步骤..............................................................................................................179 8.2.1 速度剖面.................................................................................................180 8.2.2 纵向湍流强度和长度尺度.......................................................................181 8.2.3 风洞模型.................................................................................................182 8.2.4 风洞阻塞.................................................................................................184 8.2.5 风洞压力梯度.................................................................................................185 8.2.6 雷诺数效应....................................................................................................185 8.2.7 仪器................................................................................................................188 8.3 测试结果................................................................................................................190 8.4 测试结果在风荷载计算中的应用................................................................195 8.5风洞试验结果与桌面方法的比较......................................................................203 8.6 本章摘要和结论...............................................................................................208
生成气动数据库 (AEDB) 是 RLV 乃至整个航空航天飞行器开发中的一个重要方面,该数据库可描述飞行器的气动飞行品质。这些数据库通常通过简单的启发式模型从计算流体力学 (CFD) 模拟和风洞试验 (WTT) 中汇总而成。虽然这种经典方法适用于估算标称气动系数,但量化这些飞行前数据相对于最终飞行行为的不确定性仍然是一项艰巨的任务,需要大量的人类专业知识和“直觉”。然而,特别是对于运载火箭而言,这些不确定性对于确保稳健的制导和控制算法以及满足所选任务概况的飞行器性能至关重要。
需要一个有限元模型,该模型将使用地面和飞行测试结果进行更新。分析研究的基础可以是粗网格模型,该模型由精细有限元组件模型派生而来,组装成完整的飞机模型。使用细静态网格模型作为基本模型的优点是,在细化的情况下,可以一步更新所有使用的模型。从选定的假设模式中,将计算一组广义非定常气动矩阵。为了分析真实情况,研究了不同表面的气动干扰。通过低速风洞试验和飞行试验验证了分析计算。主要飞行试验是颤振、结构耦合以及振动和载荷调查。在对称或反对称情况下,使用不同的激励方法和机动来激励飞机。
I.简介 HIS 论文是北大西洋公约组织 (NATO) 领导的研究系列论文之一,该系列论文探索了计算流体动力学 (CFD) 方法在稳定性和控制分析方面的能力。本文介绍了通用无人作战飞机 (UCAV) 配置的动态风洞试验。在后续出版物中,CFD 预测将与这些实验测量值进行比较。北约科学技术组织 (STO) 应用车辆技术 (AVT) 任务组 201 以前任任务组 AVT-161 1-9 的研究工作为基础。AVT-201 的另一个重点是预测偏转控制面效应。本文描述了一系列通用 UCAV 配置的风洞试验的强迫振荡实验数据,该配置具有多个后缘控制面。还收集了一组补充静态数据,并在参考文献 10 中报告。
风洞是一种用于空气动力学测试的实验装置,空气通过不同面积的管道吹入或吸入,其目的是模拟与飞行环境不同的气流条件。它提供了一个条件环境来测试空气动力学体,以提取控制流动的许多参数。风洞实验不仅限于飞机,还用于汽车、直升机、航天器再入、高层建筑和摩天大楼设计。风洞可以在从亚音速(M < 0.4)到高超音速(M > 5)[1] 的所有速度下运行。它们根据气流方向、测试段大小等进行分类。其中,开路风洞是本研究中的热门话题。开路采用周围空气作为流体介质。任何飞行器的空气动力学设计所需的主要数据来源是 CFD、风洞试验以及飞行试验,这些试验通常采用简化的几何模型 [11]。决定空气动力学作为一门科学的成功及其广泛应用的关键研究方法
风洞是一种用于空气动力学测试的实验装置,空气通过不同面积的管道吹入或吸入,其目的是模拟与飞行环境不同的气流条件。它提供了一个条件环境来测试空气动力学体,以提取控制流动的许多参数。风洞实验不仅限于飞机,还用于汽车、直升机、航天器再入、高层建筑和摩天大楼设计。风洞可以在从亚音速(M < 0.4)到高超音速(M > 5)[1] 的所有速度下运行。它们根据气流方向、测试段大小等进行分类。其中,开路风洞是本研究中的热门话题。开路采用周围空气作为流体介质。任何飞行器的空气动力学设计所需的主要数据来源是 CFD、风洞试验以及飞行试验,这些试验通常采用简化的几何模型 [11]。决定空气动力学作为一门科学的成功及其广泛应用的关键研究方法