同时,通用航空领域用于开发新解决方案的资源有限,导致目前使用的许多发动机类型仍未采用 FADEC 技术。通用航空类别包括各种应用,从用于娱乐飞行的小型飞机到农用飞机,再到用于运输乘客的飞机。这些应用可能因飞机的大小/设计(和安全要求)而有很大差异,也与特定飞机执行的飞行类型不同。尽管 FADEC 最初是为涡轮发动机设计的,但最近在配备活塞发动机的小型飞机中也越来越受欢迎。在这个领域,像 Continental 和 Lycoming 这样的活塞发动机制造商越来越多地在其发动机上使用这项技术。Lycoming 使用其 iE2 FADEC 技术(TO-450、TIO-540-NXT、TSIO-550、TEO-540-A1A 发动机)。大陆航空使用其 PowerLink FADEC(IO-240、IO-360、IO-550、IOF-240、IOF-550、TSIOF-550 发动机)。FADEC 在这方面的主要优势包括发动机控制简单(飞行员可以更多地关注态势感知而不是飞机控制)、更好的问题诊断以及更高的性能和效率。航空用柴油往复式发动机的 FADEC 也受到同样的关注。据 Cox [12] 称,用于此应用的 FADEC 价格在 2500 美元到 7500 美元之间。
同时,通用航空领域开发新解决方案的资源有限,导致目前使用的许多发动机类型仍未采用 FADEC 技术。通用航空类别包括各种应用,从用于娱乐飞行的小型飞机,到农用飞机,再到用于客运的飞机。这些应用可能因飞机的尺寸/设计(以及安全要求)而有很大不同,但也因特定飞机执行的飞行类型而不同。尽管最初是为涡轮发动机设计的,但最近 FADEC 也越来越受欢迎,用于带有活塞发动机的小型飞机。在这一领域,Continental 和 Lycoming 等活塞发动机制造商越来越多地在其发动机上使用这项技术。Lycoming 使用其 iE2 FADEC 技术(TO-450、TIO-540-NXT、TSIO-550、TEO-540-A1A 发动机)。大陆航空使用其 PowerLink FADEC(IO-240、IO-360、IO-550、IOF-240、IOF-550、TSIOF-550 发动机)。FADEC 在这方面的主要优势包括发动机控制简单(飞行员可以更多地关注态势感知,而不是飞机控制)、更好的问题诊断以及更高的性能和效率。用于航空用途的柴油往复式发动机的 FADEC 也受到同样的关注。据 Cox [12] 称,用于此应用的 FADEC 价格在 2500 美元到 7500 美元之间。
FPGA(现场可编程门阵列)广泛应用于工业的各个领域。FPGA 可用于执行安全关键且需要高可靠性的功能,例如汽车、飞机控制和辅助以及航空航天工业中的关键任务应用。凭借这些优点,FPGA 在核电站仪表和控制 (I&C) 系统中的应用越来越受到全世界的关注,主要用于反应堆保护系统 (RPS)。原因包括传统的模拟电子技术已经过时。新反应堆的 I&C 系统已设计为采用 PLC(可编程逻辑控制器)和 DCS(分布式控制系统)等数字设备。但是基于微处理器的系统可能由于其复杂的特性而无法简单地满足要求。例如,微处理器内核一次执行一条指令,并且需要一个操作系统来管理程序的执行。反过来,FPGA 可以在没有操作系统的情况下运行,并且设计架构本质上是并行的。在本文中,我们旨在评估基于 FPGA 的解决方案的这些和其他优势以及局限性,同时考虑到在核电站 I&C 系统中使用 FPGA 的设计指南和规定。我们还将研究 FPGA 中的一些电路设计技术,以帮助减轻故障并提供冗余。目标是展示基于 FPGA 的系统如何为现代化项目中的 I&C 系统和 RMB(巴西多用途反应堆)提供具有成本效益的选择,确保安全可靠的运行,满足分离、冗余和多样性等许可要求。
摘要:提出了一种实时飞行模拟工具,该工具使用虚拟现实头戴式显示器 (VR-HMD),用于在超视距 (BLOS) 条件下运行的遥控飞艇。具体而言,VR-HMD 是为在低空/高空飞行的平流层飞艇开发的。提出的飞行模拟工具使用 FlightGear 飞行模拟器 (FGFS) 中飞艇的相应空气动力学特性、浮力效应、质量平衡、附加质量、推进贡献和地面反作用。VR 耳机与包含每个按钮的实时方向/状态的无线电控制器(也经过模拟以提供更好的态势感知)以及为提供所需飞行数据而开发的平视显示器 (HUD) 一起连接到 FGFS。在这项工作中,开发了一个系统,将 FGFS 和支持 VR 的图形引擎 Unity 实时连接到 PC 和无线 VR-HMD,数据传输之间的延迟最小。我们发现,FGFS 以 0.01 秒的周期写入 CSV 文件时存在平衡。对于 Unity,文件每帧读取一次,相当于大约 0.0167 秒(60 Hz)。还进行了一项基于 NASA TLX 问卷的类似评级技术的测试程序,该问卷可确定飞行员在完成分配的任务时的可用心理能力,以确保拟议的 VR-HMD 的舒适性。因此,对使用桌面模拟器和 VR-HMD 的飞机控制进行了比较
空中交通管制行业受到严格监管,采用严格的流程和程序来确保知识产权 (IP) 和工作场所的安全。空中交通管制员 (ATC) 和其他与空中交通服务相关的角色的培训是一个漫长而昂贵的过程。预计学员的培训速度将远远低于空中交通行业对员工的需求。本文重点介绍两个原型移动培训应用程序——位置指示器 (LI) 和飞机控制位置操作员 (ACPO) 入门包。LI 和 ACPO 入门包的制作旨在探索如何使用数字应用程序改进和支持空中交通管制培训。每个应用程序都探索了空中交通管制行业学员的一个关键学习领域,并提出了目前正在使用的等效培训的替代方案。这两个原型的设计重点是提供简洁的用户体验以及游戏化元素来提高参与度。作为本文的一部分,我们利用 LI 和 ACPO Starter Pack 进行了可用性测试。我们在四个不同地点共进行了九次可用性测试。这些可用性测试的参与者来自不同的人口统计学背景,对当前培训的体验各不相同,使用这两种应用程序的时间也各不相同。我们调整了系统可用性量表 (SUS),并将其用于量化参与者的反应
系统设计 • 请勿创建可能危及设备和人员安全的 GP 触摸屏开关。GP、其 I/O 单元、电缆和其他相关设备的损坏可能会导致输出信号持续保持 ON 或 OFF 状态,并可能导致重大事故。因此,应使用限位开关等设计所有监控电路以检测错误的设备移动。为防止与错误信号输出或操作相关的事故,应将用于控制重要机器操作的所有开关设计为通过单独的控制系统进行操作。 • 请勿将用于控制机器安全操作的开关(如紧急停止开关)创建为 GP 触摸屏图标。务必将这些开关安装为单独的硬件开关,否则可能会发生严重的人身伤害或设备损坏。 • 请设计您的系统,以使设备不会因 GP 与其主机控制器之间的通信故障而发生故障。这是为了防止任何可能发生的人身伤害或材料损坏。 • 请勿将 GP 单元用作严重警报的警告设备,这些警报可能会导致严重的操作员伤害、机器损坏或生产停止。关键警报指示器及其控制/激活器单元必须使用独立硬件和/或机械联锁装置进行设计。• GP 不适用于飞机控制装置、航空航天设备、中央主干数据传输(通信)设备、核电控制装置
FPGA(现场可编程门阵列)广泛应用于工业的各个领域。FPGA 可用于执行对安全至关重要且需要高可靠性的功能,例如汽车、飞机控制和辅助以及航空航天工业中的关键任务应用。凭借这些优点,FPGA 在核电站仪表和控制 (I&C) 系统中的应用,尤其是反应堆保护系统 (RPS),受到全世界越来越多的关注。原因包括传统的模拟电子技术已经过时。新反应堆的 I&C 系统已设计为采用数字设备,例如 PLC(可编程逻辑控制器)和 DCS(分布式控制系统)。但是,基于微处理器的系统可能由于其复杂的特性而无法简单地满足要求。例如,微处理器内核一次执行一条指令,并且需要操作系统来管理程序的执行。反过来,FPGA 可以在没有操作系统的情况下运行,并且设计架构本质上是并行的。在本文中,我们旨在评估基于 FPGA 的解决方案的这些和其他优势以及局限性,同时考虑到在核电站 I&C 系统中使用 FPGA 的设计指南和规定。我们还将研究 FPGA 中的一些电路设计技术,以帮助减轻故障并提供冗余。目标是展示基于 FPGA 的系统如何为现代化项目中的 I&C 系统和 RMB(巴西多用途反应堆)提供具有成本效益的选择,确保安全可靠的运行,满足分离、冗余和多样性等许可要求。
• 将 GP37W2-BG41-24V(以下简称“GP”)的电源线端子连接到电源接线端子时,请先检查 GP 电源是否已通过断路器或类似装置完全关闭。 • 请勿使用超出 GP 指定电压范围的电源。否则可能会导致火灾或触电。 • 请勿修改 GP 的设计,因为这可能会导致火灾或触电。 • 请勿在存在易燃气体的环境中使用 GP,因为操作 GP 可能会导致爆炸。 • 如果 GP 的锂电池 *1 更换不当(即其 + 和 - 侧接反),可能会爆炸。因此,请在更换电池之前联系您当地的 GP 经销商。 • 请勿在危及生命或重要的防灾情况下使用 GP 触摸面板开关。对于与安全相关的开关(例如紧急停止开关),请务必使用单独的机械开关。 • 为防止操作员受伤或机器损坏,请务必设计系统,使机器不会因 GP 与其主机控制器之间的通信故障而发生故障。 • GP 不适合与飞机控制设备、航空航天设备、中央中继数据传输(通信)设备、核电控制设备或医疗生命支持设备一起使用,因为这些设备固有要求极高的安全性和可靠性。 • 将 GP 与运输车辆(火车、汽车和轮船)一起使用时
这些都是驾驶舱设计过程需要确保的,但不限于显示器设计、飞机控制、自动化、驾驶舱的人机交互和飞行员的外部视野,即外部视野。外部视野必须满足监管要求,旨在确保视野足以让飞行员安全操作飞机,并让他们有合理的机会看到并避开构成碰撞威胁的其他飞机。同时,在飞行的关键时期,重要的是机组人员要以最小的头部转动来获取视野前方的信息。因此,应将带有关键飞行信息的驾驶舱显示器放置在这些位置。应兼顾外部和内部视野,以确保飞行员的可见性。此外,一些将 PFD 布置在驾驶舱仪表板中的选项给面板空间、飞行员的安全性和舒适性带来了困难。在新的区域飞机驾驶舱中使用航空电子设备 15.1 英寸或 14.1 英寸显示器评估了两种布局 PFD,即直线和 T 线布局。由于驾驶舱空间有限,直列式 4 台 15.1 英寸显示屏无法容纳仪表板和忽略;但 T 型 15.1 英寸显示屏可作为选项 1。4 台 14.1 英寸显示屏可分别作为选项 2 和选项 3 排列为直列式和 T 型布局,并且两者都可满足监管要求,同时满足飞行员的外部和内部视野。
1 CAG 1 加拿大航空大队 2ATAF 第 2 盟军战术空军 4ATAF 第 4 盟军战术空军 10 TAG 第 10 战术航空大队 AAFCE 中欧盟军空军 ACE 欧洲盟军司令部 AC&W 飞机控制和警告 AFCENT 中欧盟军 AFHQ 空军总部 AFVG 英法可变几何 AMB 航空器材基地 AH 攻击直升机 AMF(A) 欧洲盟军司令部机动部队(空中) AMF(L) 欧洲盟军司令部机动部队(陆地) AMAE 航空工程空军成员 AMAP 计划空军成员 AMAS 空军参谋空军成员 AMC 航空器材司令部 AMTS 空军技术服务成员 AOC 空军指挥官 AOP 空中观察站 ASR 空中海上救援 ATC 空中运输司令部 ATIP 信息和隐私访问 AWX 全天候战斗机 BAFO 英国占领空军 BAI 战场空中拦截 BAOR英国莱茵军团 BCATP 英国联邦航空训练计划 BOMARC 波音密歇根航空航天研究中心 CAF 加拿大空军 CAF 加拿大武装部队 CAMRA 加拿大先进多用途飞机 CAOF 加拿大陆军占领军 CAS 空军参谋长 CAS 近距离空中支援 CEF 加拿大远征军 CENTAG 中央集团军 CEPE 中央实验和验证机构 CEPS 中欧管道系统 CFB 加拿大武装部队基地 CFE 加拿大欧洲武装部队 CFHQ 加拿大武装部队总部