a. 周一至周五进行高强度固定翼飞行训练,直升机在 10 海里半径范围内定期移动,并可能同时进行两条跑道操作。300 英尺以下机场上的直升机移动不会通知环路交通。b. 飞机静止时使用再加热可能会损坏跑道表面。ci 跑道 13 - 房屋,距门槛 810 英尺,海拔 63 英尺,中心线左侧 370 英尺;地面,距门槛 1,810 英尺,海拔 77 英尺。ii. 跑道 01 - 围栏,距门槛 400 英尺,海拔 28 英尺,中心线右侧 60 英尺。iii. 跑道 19 - 铁路,距门槛 600 英尺,海拔 43 英尺。d.由于 SRE 性能不佳,在 100R 和 210R 之间 12 海里 VYL TACAN 之外,交通信息可能会有限。e. 固定翼飞机和直升机适用特殊程序。请参阅 TAP。f. 由于高强度的 4FTS 飞行,所有来访飞机必须携带 15 分钟的等待燃料。g. 所有来访飞机的最小刹车高度为 1,000 英尺。h. 仅限周六、周日和公共假日。模型飞机飞行将在以废弃的 26 号跑道中心、高度 1500 英尺 AGL 为中心 0.5 海里半径范围内进行。i. 根据 MAA/EXEMPTION/2014/20,皇家空军谷不受 RA 3500 要求的约束。因此,未满足最低跑道末端安全区 (RESA) 要求。游客请注意,跑道护栏会对飞机造成冲出跑道的风险。
ET ME 介绍一下自己。1981 年,我在比金山首次驾驶轻型飞机飞行。我当时的男朋友刚刚完成了塞斯纳 152 的私人飞行执照,所以我乘坐公共交通工具前往克罗伊登站。当时我没有开车,也没有汽车;当时我刚从伦敦大学毕业,所以不需要汽车。我记得这次经历比我预想的要愉快得多,因为第一眼看到这架飞机时,它看起来相当小。接下来的周末,我们去了英国皇家空军比斯特基地滑翔,那时我才真正迷上了飞行。我永远不会忘记第一次用绞盘发射时的兴奋——我必须这样做。这是一次可以接受的飞行,无论是在金钱方面还是在交通方面。整个滑翔社区的精神意味着我周五晚上从伦敦市中心出发时从未缺少过搭车,周日回来时也从未缺少搭车。三十八年后,经过许多飞行小时,我发现自己成为了你们 AOPA 英国的新主席。为什么?因为我加入了三个飞行会员协会,所以我通过我的滑翔俱乐部——英国女飞行员协会成为了英国滑翔协会的会员,当我在 1987 年获得 PPL 时,我加入了 AOPA。这三个协会与我对休闲飞行的兴趣相吻合。在随后的几年里,我很幸运能够继续负担得起飞行费用。所以当我决定结束我在 IT 行业的企业生涯时,我决定追随我对航空业的终生热爱。你不会不知道
摘要:昆虫利用腹部和其他附肢的动态关节和驱动来增强空气动力学飞行控制。飞行中的这些动态现象有许多用途,包括保持平衡、增强稳定性和扩展机动性。生物学家已经观察和测量了这些行为,但尚未在飞行动力学框架中很好地建模。生物附肢通常相对较大,以旋转方式驱动,并具有多种生物功能。用于飞行控制的技术移动质量往往紧凑、平移、内部安装并专用于该任务。生物飞行器的许多飞行特性远远超过任何同等规模的技术飞行器。支持现代控制技术探索和管理这些执行器功能的数学工具可能会开启实现敏捷性的新机会。本文开发的多体飞机飞行动力学紧凑张量模型允许对具有机翼和任意数量的理想化附件质量的仿生飞机进行统一的动力学和气动模拟和控制。演示的飞机模型是一架类似蜻蜓的固定翼飞机。移动腹部的控制效果与控制面相当,腹部横向运动代替气动舵以实现协调转弯。垂直机身运动实现了与升降机相同的效果,并且包括上下潜在有用的瞬态扭矩反应。当控制解决方案中同时采用移动质量和控制面时,可实现最佳性能。一架机身驱动与传统控制面相结合的飞机可以通过使用本文介绍的多体飞行动力学模型设计的现代最优控制器进行管理。
复合材料结构可以显著降低客机的重量。然而,增加的生产成本需要应用具有成本效益的设计策略。因此,需要一个比较值,用于评估设计方案的成本和重量。直接运营成本 (DOC) 可用作此比较值;它捕获了飞机飞行时产生的所有成本。在本文中,提出了一种复合材料结构的成本/重量优化框架。它考虑了制造成本、无损检测成本和基于飞机重量的终生燃油消耗,因此使用简化版本的 DOC 作为目标函数。首先,解释飞机设计的不同阶段。然后重点讨论复合结构的优点和缺点、设计约束和允许值以及无损检测。此外,还讨论了多目标优化和成本与重量的综合优化等主题。制造成本可以通过不同的技术来估算;在这里,基于特征的成本估算和参数成本估算被证明最适合所提出的框架。最后,对所附论文进行了简要总结。第一篇论文包含一项参数研究,其中针对一系列成本/重量比(重量损失)和材料配置优化了蒙皮/纵梁面板。重量损失定义为特定的终生燃油消耗,取决于飞机的燃油消耗、燃油价格和优化器的观点。结论是,设计方案的理想选择既不是低成本也不是低重量,而是两者的结合。第二篇论文提出在部件的设计过程中纳入无损检测成本,并根据检测参数调整每个层压板的设计强度。因此,超声波检测的扫描间距被视为一个变量,代表(保证的)层压板质量的指标。结果表明,在早期设计阶段分配和调整层压板的质量水平可以降低直接运营成本。
ecent年份见证了人工智能(AI),机器学习(ML),计算机视觉和自主系统的巨大发展。AI专注于将人类智能纳入机器,但ML可以看作是旨在增强计算机系统能力具有“学习”能力的一系列工具。AI被视为更广泛的概念[1]。图1显示了这三个相关领域之间的关系。根据传感器数据融合和国家信息融合学会(ISIF)的考虑,ML的区域已具有不同的发展,并以各种方式 - 从生物学启发的神经网络到序列化的蒙特卡洛·卡洛概率方法,用于非高斯系统的非线性系统。但是,主要是在统治年份中,当ML方法变得流行并扩展到值得信赖的ML和可解释的AI时。这些尤其是与引入不同级别的自主权[2],[3]的必要性联系在一起的,并找到带来解释性水平的事件的原因或因果关系。这两个尤其是与传感器数据相关的,如今数据既来自来自不同方式的“硬传感器”,例如雷达,声传感器,雷达,与光学,热摄像机和无线传感器网络相结合,也来自柔软的传感器(互联网,社交网络),例如Twitter,Twitter,Facebook,Facebook和其他)。此外,数据以不同的时间率和准确性水平到达。理解了如此多的杂项数据是一项充满挑战的任务,它已经广泛研究,但是为自主和半自治系统提供可靠的解决方案是一项仅在部分解决的任务。从这种类型的多个异质传感器中融合数据是挑战的一部分;当必须依次和实时执行统计决策时,更是如此。这对于安全关键任务(例如无人驾驶汽车(UAV),飞机飞行控制系统,未来的战斗飞机系统,数字卫生系统等)尤其重要。
抽象无线通信如今被视为一种破坏性技术。的确,即使有线系统可以轻松达到100%的可靠性,它也会引起大量的接线,这对质量的影响不高,对寿命也没有可忽略的影响。为了节省时间和计划,无线通信传感器显示为接线优化,可以快速安装而无需修改通用电气网络。,但是这种系统需要嵌入的能量。为了证明适合各种环境的无线技术概念的有效性,包括空间,航空或建筑物的有效性,在本文中描述了微型和自主锂离子电池的发展。在太空,飞机飞行,寒冷环境或收获条件中的原型表演进行了讨论。还引入了高于250Wh/kg或低温工作电解质(低于-20°C)的新化学物质。关键字:二级锂离子电池,极端环境,高能量,航空航天,收获1介绍,即面临对航空航天中高能量,轻质可充电电池的需求不断增长的,必须考虑到诸如温度,引力,真空或振动等环境限制。在高温下(高于100°C)或低温(降至-40°C,-60°C)的化学分布,具有高能或能力的高能量或能力,具有真空度或非常低压,并且额外的较薄构型和/或柔性,非常小的3D尺寸(少于几个MM3)成为这里的必要性。这些考虑因素导致了微型和自主液体电池的开发,以证明适用于各种环境的无线技术概念的有效性,包括空间,航空航天,军事或公共场所,范围从任务范围内,范围从几乎不需要的循环(例如启动申请)到需要千万千分之一的任务。涉及卫星,在地面进行测试以及-40°C和 +60°C之间的存储
互联网不仅改变了我们的沟通方式,还彻底改变了我们的生活、工作、消费和消磨闲暇时光的方式。现在,航空运输业使用互联网协议 (IP) 的技术将带来同样巨大的变革——这次是飞机的运营,无论是在地面还是在飞行中。这种变革在飞机通信方式上最为明显。乘客已经从这场革命中受益:乘客连接系统已经提供互联网接入、飞机飞行时的蜂窝电话通信。如今,大多数机上和外部数据通信选项提供的容量和多功能性有限。这解释了为什么可以交换的信息量仅限于短消息,主要是预定格式。这也解释了为什么一部分通信仍然通过语音进行。此外,当飞机在地面时,目前只有有限的几种方式可以经济高效地传输大量信息,其中许多方式涉及手动下载和物理存储介质。这些限制对飞机运营效率和航空公司实现飞机自动化的能力产生了重大影响。但“IT 化飞机”(有时也称为“电子化”或“数字飞机”)的引入使飞机之间能够实现安全的 IP 通信。这对行业来说是一个至关重要的变革。作为在飞机上实施完整 IT 基础设施的第一步,它将对航空公司运营飞机的方式产生重大的变革性影响——不仅在驾驶舱,而且在客舱程序、飞机周转、维护和乘客服务方面。IT 化飞机的影响将无处不在,为行业提供解决长期存在的运营效率低下问题的方法。通过 IP 化,我们将看到驾驶舱和客舱的自动化和效率达到新的水平,使机组人员和乘客能够访问高速网络和通信。这为在飞机上引入新系统、应用程序和工具铺平了道路。随着空客 A380 和波音 777 新型飞机的出现,以及波音 787 和空客 A350 等新型飞机的即将问世,这一现实已经开始显现。
互联网不仅改变了我们的沟通方式,还不可逆转地改变了我们的生活、工作、消费和消磨闲暇时间的方式。现在,航空运输业使用互联网协议 (IP) 的技术将带来同样巨大的变革,这次是飞机运营,无论是在地面还是在飞行中。这种变革在飞机通信方式上最为明显。乘客已经从这场革命中受益:乘客连接系统已经提供互联网接入、飞机飞行时的蜂窝电话通信。如今,大多数机上和外部数据通信选项的容量和多功能性都有限。这就解释了为什么可以交换的信息量仅限于短消息,主要是预定格式。这也解释了为什么一部分通信仍然通过语音进行。此外,当飞机在地面上时,目前只有有限的几种方式可以经济高效地传输大量信息,其中许多方式涉及手动下载和物理存储介质。这些限制对飞机运营效率和航空公司实现飞机周围实践自动化的能力产生了重大影响。但“IT 化飞机”的引入——有时也称为“电子化”或“数字飞机”——实现了飞机之间的安全 IP 通信。这对行业来说是一个关键的游戏规则改变者。作为在飞机上实施完整 IT 基础设施的第一步,它将对航空公司运营飞机的方式产生重大的变革性影响——不仅在驾驶舱,而且在客舱程序、飞机周转、维护和乘客服务方面。IT 支持的飞机将产生无所不在的影响,为行业提供解决长期存在的运营效率低下问题的方法。借助 IP 支持,我们将看到驾驶舱和客舱的自动化和效率达到新的水平,使机组人员和乘客能够使用高速网络和通信。这为在飞机上引入新系统、应用程序和工具铺平了道路。随着空客 A380 和波音 777 的新型号以及即将推出的波音 787 和空客 A350 等新型飞机的出现,现实已经开始显现。
日期和位置:(教师应输入送给实习生的日期或年的日期或时间。)第一步:预计划/预活跃性:实施时间范围:本课程仍然是对体育活动的介绍,应更接近年初的年初来为其余的课程提供基础。注释教师●解决技能分层和其他高期望机会的“恰当挑战”●参考工作 /就业:竞争性综合就业(16多小时等)< / div)< / div>●在可能的课程计划摘要中,在批判性思维问题和更高级别的项目中构建:本课程侧重于不同类型的练习及其对我们身体的工作。它回顾了成人的体育锻炼建议,为实习生提供了一个练习简单练习的机会,并开始考虑锻炼如何帮助他们的身体。词汇表:不同类型的练习:灵活性练习:伸展肌肉,可以帮助您的身体保持灵活。这些练习可能不会改善您的耐力或力量,但是灵活可以为您带来更多的运动自由以及您的日常活动。它也可以帮助您避免在长时间限制在空间中(例如长时间的会议或飞机飞行)。进行灵活练习的最佳时间是当您的肌肉已经温暖时,它们可以伸展而不会紧绷或疼痛。如果您只进行伸展运动,请先先步行几分钟即可为您的肌肉热身。如果您正在做耐力或力量锻炼,请在不以前的情况下进行伸展。(美国心脏协会:https://www.heart.org/en/healthy-living/fitness/fitness-basics-basics/fortimipy-exercise-stretching)余额练习:像名字一样,改善您的平衡。这将帮助您建立稳定身体并防止您跌落的肌肉。拥有良好的平衡对于我们每天进行的许多活动,例如走路和上下楼梯很重要。经常,我们并不完全意识到在尝试平衡练习之前,我们可能会有弱平衡。(美国心脏协会:https://www.heart.org/en/healthy-living/fitness/fitness/fitness/fitness/fitness/balance-cortion-锻炼)有氧运动/心血管(耐力)练习:包括增加呼吸和心律和心律的活动,例如步行,慢跑,游泳,游泳,游泳,游泳,骑自行车,骑自行车和跳跃。耐力活动可以使您的心脏,肺部和循环系统保持健康,并改善您的整体健身。建立耐力使您可以更轻松地进行许多日常活动。(美国心脏协会:https://www.heart.org/en/healthy-living/fitness/fitness-basics-basics/endurance-eccise-aerobic)力量建立/抵抗力锻炼:增强肌肉可以使您的肌肉能够执行日常活动并帮助保护身体免受伤害。更强的肌肉也会提高您的代谢率,这意味着即使身体处于静止状态,也会燃烧更多的卡路里。增加了骨骼,肌肉和结缔组织(肌腱和韧带)的强度,损伤风险较低;并增加肌肉质量,这使您的身体更容易燃烧卡路里,从而保持健康的体重。(美国心脏协会:https://www.heart.org/en/healthy-living/fitness/fitness-basics/strength-and-comentance-ustance-training-training-eccise)
摘要:变速箱是一种机械动力传输装置,最常用于获得速度和扭矩方面的机械效益。变速箱由不同类型的齿轮组成,这些齿轮按级联顺序组装以执行预期任务。变速箱内任何旋转部件发生故障都将终止与其相关的机械系统的工作状态。这会导致行业服务中断,从而产生昂贵的赔偿。特别是在飞机发动机中,它用作附件驱动器,为液压、气动和电气系统提供动力。这促使人们监测变速箱的健康状况。本文简要回顾了 GHCM(变速箱健康状况监测)、变速箱故障、时域特征、频域特征、时频域概述;特征提取技术和故障分类技术。本研究的结果是提供有关变速箱健康状况监测的简要信息。关键词:变速箱故障、GHCM、故障分类技术。1. 简介变速箱是一种附件驱动器,是飞机燃气涡轮发动机的一部分。附件变速箱为液压、气动和电气系统提供动力。它驱动燃油泵、油泵和测速发电机。附件齿轮箱通过径向驱动轴与高压压缩机相连,齿轮箱所需的动力来自连接发动机涡轮和高压压缩机部分的中心轴。附件单元的动力从旋转的发动机轴通过内部齿轮箱输送到外部齿轮箱,内部齿轮箱为附件提供运动并将附件齿轮传动分配给每个驱动单元 [1]。图 1 显示了齿轮箱在飞机发动机中的安装位置。在一些早期的发动机中,径向轴用于驱动每个附件单元。虽然它提供了将附件单元放置在理想单元中的灵活性,但它降低了单个齿轮的动力传输。它需要使用大型内部齿轮箱。由于高压压缩机出口和燃烧室之间可用的空间很小,内部齿轮箱的位置很复杂。由于内部齿轮箱和径向驱动轴的安装(干扰气体流动)导致的热膨胀和发动机性能下降,在涡轮区域比压缩机区域造成了更大的问题。对于任何给定的燃气涡轮发动机,涡轮面积都小于压缩机面积,这使得将变速箱安装在压缩机物理提供的空间内更加容易。径向驱动轴的主要用途是将驱动力从内部变速箱传输到外部变速箱。反之亦然,即将高启动扭矩从启动器传输到高压压缩机系统,以启动发动机。最好使驱动轴直径最小,以减少气流干扰。直径越小,轴必须旋转得越快才能产生相同的功率。但是,直径有一个限制,因为它会增加内部应力并增加更大的动态问题,从而导致振动。中间齿轮箱的使用取决于发动机结构的设计及其尺寸。当没有提供将径向轴直接连接到外部齿轮箱的措施时,中间齿轮箱组装在内部齿轮箱和外部齿轮箱之间。外部齿轮箱为每个附件单元提供安装面,并由附件驱动器组成。外部齿轮箱的位置取决于几个因素。它包裹在发动机的低前部区域周围,以减少飞机飞行时的阻力效应,并且由于它位于下部,维护人员很容易接近。如果任何附件单元发生故障,停止旋转,则可能导致故障