摘要:无人机视觉技术在野外救援中的重要性日益凸显。针对野外网络状况不佳、天气恶劣的人类,本文提出了一种从无人机多光谱相机实时拍摄的视频或预先下载的卫星多光谱图像中提取道路和检测路况的技术,为人类提供最优的路线规划。此外,根据无人机的飞行高度,人类可以通过动态手势识别与无人机进行交互,以识别紧急情况和潜在危险,以便进行紧急救援或重新规划路线。本研究的目的是检测路况并识别紧急情况,以便为野外的人类提供必要和及时的援助。通过获取归一化植被指数(NDVI),无人机可以有效区分裸土路和碎石路,从而完善我们之前的路线规划数据的结果。在低空人机交互部分,我们基于媒体管道手势标志,结合机器学习方法,构建了四种基本手势的数据集,用于求救动态手势识别。我们在不同的分类器上测试了数据集,最好的结果表明该模型在测试集上可以达到 99.99% 的准确率。在这篇概念验证论文中,上述实验结果证实了我们提出的方案可以实现我们预期的无人机救援和航线规划任务。
最近,无人机在商业用途上的可用性和使用量显著增加。这种趋势是由这些设备的灵活性和高速能力推动的,它们的速度可以达到 150 公里/小时。这种现象的迅速增加对世界范围内的安全和防御提出了根本性的挑战,正如正在进行的俄乌冲突所证明的那样。无人机中使用塑料、环氧树脂和玻璃纤维等建筑材料会导致雷达横截面积较小。这就需要实施光电技术以实现可靠的检测和识别。尤其是当涉及到速度可达 200 公里/小时的商用竞速无人机,或者速度可达 600 公里/小时的新型喷气式 Shahed-238 时,迫切需要快速反应对策。这是因为这些无人机飞行高度较低,有效雷达截面(RCS)相对较小,检测通常需要透射频谱特征分析、速度和运动分析或光学识别。此外,熟练的操作员使用第一人称视角(FPV)护目镜可以熟练地控制快速无人机,这对物理拦截策略构成了重大挑战,而俄乌战争的经验表明,物理拦截策略无效、容易因数量过多而不知所措且成本高昂。
4D 四维 ABRR 机载改道 ABTM 机载轨迹管理 ACARS 飞机通信寻址和报告系统 ANSP 空中导航服务提供商 AOC 航空公司运营中心 ARTCC 空中交通管制中心(“中心”) ATCSCC 空中交通管制系统指挥中心 CDM Net 协作决策网络 CDM 协作决策 CTOP 协作轨迹选项程序数据通信数字数据通信 EFB 电子飞行包 ERAM 航路自动化现代化 FAA 联邦航空管理局 FL 飞行高度 FMS 飞行管理系统 NAS 国家空域系统 NASA 美国国家航空航天局 NextGen 下一代空中运输系统 RAD 航路修正对话 RTA 所需到达时间 RTC 相对轨迹成本 SATM 战略机载轨迹管理 STAR 标准终端到达航路 SWIM 全系统信息管理 TASAR 交通感知战略机组请求 TBFM 基于时间的流量管理 TBO 基于轨迹的运行TFDM 终端飞行数据管理 TFM 交通流量管理 TFMS 交通流量管理系统 TMU 交通管理单元 TOS 轨迹选项集 TRACON 终端雷达进近管制
农业。然而,关于无人机干扰对动物福祉影响的研究缺乏或有限。本研究的目的是通过测量单次或多次无人机飞行时牛的心率和运动率来研究无人机飞行对肉牛的影响。总共 16-18 头杂交肉牛小母牛被引入不同的飞行模式,飞行高度在 5 到 9 米之间,水平速度约为 1 到 2 米/秒,持续 4 周,每周重复飞行 3 天。研究结果表明,单次无人机飞行(i)圆形和(ii)网格模式飞行对小母牛的心率和运动率没有显着影响。然而,多次(i)圆形模式和(ii)接近式飞行在首次引入无人机时会增加小母牛的心率,但重复飞行会导致习惯。此外,刚开始接触圆形飞行模式的小母牛可能会逃跑,但经过多次飞行后就会习惯。然而,接触接近式飞行模式的小母牛即使经过多次飞行,也表现出更多的逃跑行为。本研究的结果将为安全使用无人机进行牛健康和行为监测提供信息。关键词:无人机、网格模式、圆形模式、心率、
4D 四维 ABRR 机载改道 ABTM 机载轨迹管理 ACARS 飞机通信寻址和报告系统 ANSP 空中导航服务提供商 AOC 航空公司运营中心 ARTCC 空中交通管制中心(“中心”) ATCSCC 空中交通管制系统指挥中心 CDM Net 协作决策网络 CDM 协作决策 CTOP 协作轨迹选项程序数据通信数字数据通信 EFB 电子飞行包 ERAM 航路自动化现代化 FAA 联邦航空管理局 FL 飞行高度 FMS 飞行管理系统 NAS 国家空域系统 NASA 美国国家航空航天局 NextGen 下一代空中运输系统 RAD 航路修正对话 RTA 所需到达时间 RTC 相对轨迹成本 SATM 战略机载轨迹管理 STAR 标准终端到达航路 SWIM 全系统信息管理 TASAR 交通感知战略机组请求 TBFM 基于时间的流量管理 TBO 基于轨迹的运行TFDM 终端飞行数据管理 TFM 交通流量管理 TFMS 交通流量管理系统 TMU 交通管理单元 TOS 轨迹选项集 TRACON 终端雷达进近管制
Saras 原型 PT2 飞机 VT-XRM 由班加罗尔国家航空航天实验室制造和拥有,计划进行第 49 次试飞。2009 年 6 月 3 日,还包括在 10000’AMSL 处进行飞行中发动机关闭和重新点火程序。首席试飞员坐在指挥官座位上,试飞员坐在副驾驶座位上,飞行测试工程师也在机上。飞机于 0925 UTC 起飞,随后切换到雷达。没有发生任何事件。飞机随后被允许升至 100 级飞行高度,飞行距离可达 10 英里。在 9000’AMSL 完成一般操作检查后,没有任何事件发生,在 r/w 09 上进行了单引擎模拟进近。大约 0941 UTC 时,飞机获准超调,风速 090/06 节。飞机在 300’AGL 超调。飞机随后再次切换到雷达。0942 UTC 时,飞机获准爬升 FL100 并继续前往西南 2 区执行发动机重新点火测试程序。在爬升至该区约 9000’AMSL 后,西南航空飞机在 0948 UTC 时报告了 15 英里和 FL 90
地面站与机载站之间的语音通信基于模拟 DSB–AM 调制,使用 117.975–137.000 MHz 频段。为了确保正确理解消息,使用国际民用航空组织 (ICAO) 标准化的特殊用语 [1], [2]。它由一系列关键词组成(例如确认、确认、清除、确认、结束、报告、收到),需要使用特殊的拼写系统,包括字母(A – alpha、B – bravo、C – Charlie、D – delta 等)和数字(4 – fower、9 – niner),数字发音(每个数字单独发音,但允许使用“千”、“百”和“十进制”等词)。为提高可理解性,采用了特殊方案:“复读”—— 按照收到的信息重复此消息,“再说一遍”—— 重复整个传输或上次传输的一部分,“说得慢一点”—— 降低语速,“说两遍”—— 此消息中的每个单词或词组都发音两次。尽管如此,有些消息仍然会被误解,尤其是对于英语有问题的飞行员而言。 以图形方式表示消息的最重要元素(例如,飞行参数的数值,如飞行高度、航向、失控编号)将有助于理解地面站发送的消息。这需要随语音消息传输数字信息。 如何传输此类数字信息
模型飞机和无人机的使用受民航安全局 (CASA) 法律的约束,依据 1998 年民航安全条例 (CASR1998)。完整详情可在民航安全局 (CASA) 网站上找到 - 针对任何出于娱乐或教育目的而飞行模型飞机或无人机的人的新建议 | 民航安全局 (casa.gov.au)。CASA 规则包括:• 仅在日间目视气象条件 (VMC) 下在视线范围内飞行。这意味着: o 不得在夜间飞行 o 不得在云层或雾中飞行 o 始终能够用自己的眼睛看到飞机(而不是通过第一人称视角 (FPV),除非您按照经批准的模型飞行协会的程序操作) o 飞行距离车辆、船只、建筑物或人员不得少于 30 米。 o 不得飞越任何人口密集的地区,例如海滩、其他人的后院、人口密集的公园或正在进行比赛的运动场 o 飞行高度不得超过地面 400 英尺(120 米) o 飞行方式不得对其他飞机造成危险 o 与机场、飞机场和直升机着陆点保持至少 5.5 公里的距离。CASA 是执法机构,但是,在出现重大威胁/危险或可察觉的对人员或飞机的威胁时,南澳大利亚州警方会进行干预。
摘要。我们评估了在蒙古某铜矿床环境中,一种新型系统像素清晰校准场在航空高光谱矿物测绘中应用的机会和性能。校准场旨在用于估计特定地质场景中单个像素中关键矿物的灵敏度和量化。校准场的布局由两种不同的含铜岩石样品、一种来自矿山的低铜含量岩石材料、来自矿山的尾矿材料和具有明确已知光谱特征的校准材料组成。样品材料的缩放覆盖范围旨在开发统计方法,以基于像素的方法量化航空调查中的目标矿物。数据收集包括使用地球化学、X 射线衍射以及微观和电子光栅微观方法描述校准材料。使用可见光和近红外机载传感器以及短波红外机载传感器,从六个高度多次重复收集校准场的数据。经过像元校正和大气校正后,对1400、1900、2200nm处黏土矿物的吸收特征进行了精确测量和统计分析,给出了覆盖率与吸收特征特别是在2200nm附近的相关性,以及飞行高度对探测灵敏度的影响和
推扫式传感器 2000 年,徕卡公司首次推出了用于测绘的推扫式传感器,其应用范围不断扩大,重点是大面积正射影像镶嵌。在获取高质量、几何一致且稳健的影像方面,推扫式方法存在许多有据可查的缺点,这是因为成像质量和动态范围与机载平台的速度直接相关。推扫式捕获像素的有效覆盖范围形状也会随地速和高度而变化。最后,推扫式影像没有固有的几何强度,完全依赖于对机载 GPS 和 IMU 数据和时间的复杂处理,以生成可用于公制应用的影像。电子和处理方面的改进可以尽量减少但不能完全消除这些固有的挑战。推扫式传感器在市场上仍然很活跃,但主要用于正射影像镶嵌项目,在这些项目中,效率和摄影测量精度并不是最重要或最重要的因素。即使是曾经捍卫推扫式技术的供应商现在也认识到了取景传感器的优势,并同时提供这两种传感器。推扫式技术的基本限制是无法在不影响图像质量的情况下,在广泛的飞行高度和条件下提供灵活性和曝光控制。