1 美国农业部植物科学研究中心,美国明尼苏达州圣保罗 55108 2 明尼苏达大学植物精准基因组学中心,美国明尼苏达州圣保罗 55108 3 明尼苏达大学基因组工程中心,美国明尼苏达州圣保罗 55108 4 明尼苏达大学农学与植物遗传学系,美国明尼苏达州圣保罗 55108 5 马里兰大学植物科学与景观建筑系,美国马里兰州帕克分校 6 马里兰大学生物科学与生物技术研究所,美国马里兰州罗克维尔 7 植物发育激素控制实验室。生物科学系,高级农业学校“Luiz de Queiroz”,圣保罗大学,CP 09, 13418-900,皮拉西卡巴,圣保罗,巴西 8 马克斯普朗克分子植物生理学研究所,Am Muëhlenberg 1, 14476波茨坦戈尔姆,德国 9 Departamento de Biologia Vegetal,Universidade Federal de Vic¸osa,Vic¸osa,米纳斯吉拉斯州,CEP 36570-900,巴西
图 1 GEaReD 与传统育种方法的应用对比及其省时优势。A) 传统育种方法。高产品种与另一个亲本(通常是具有有趣特征的驯化品种)一起使用。然后将筛选所得植物以获得所需特征,并与高产亲本进行回交,直到所需特征在高性能品种中固定下来。这可能需要几代杂交,并限制亲本材料与品种的可育性。B) GEaReD 作为未来育种的展望。将在高度自动化的环境中筛选野生祖先以获得所需特征。自动筛选设施将与组学设施相结合,并通过 AI 算法分析所得数据以识别有趣的特征。然后,最有希望的候选者将用于基因组编辑,在改变主要驯化基因后,将创建一个具有以前不存在的特性的新品种
神经嵴细胞基因控制神经嵴细胞向发育中的脊椎动物胚胎多个部分的迁移。最近有一个假设认为,家养动物特有的“驯化综合症”是由对神经嵴细胞基因(特别是影响细胞迁移的基因)的驯化选择所驱动。这可以解释为什么这种综合症涉及许多不同的表型效应。这些影响可能与神经嵴细胞迁移缺陷有关。该假设预测,家养物种和相关野生物种对这些神经嵴细胞基因的选择模式将有所不同。具体而言,它预测与密切相关的野生物种相比,家养物种对这些基因的正向选择水平更高。在这里,我们在比较框架中测试了这一预测。我们从公共数据库 (NCBI) 中获得了 30 种家养脊椎动物和仍处于野生状态的匹配近亲的 11 个关键神经嵴细胞基因的 DNA 序列。我们利用 HyPhy 软件套件中的 Contrast-FEL 程序,在系统发育框架中比较了这两种分类群中正向选择的位点数量(以跨密码子的非同义核苷酸到同义核苷酸替换率来衡量)。我们发现,相对于与其密切相关的野生谱系,驯化谱系对这些关键基因表现出始终更高的正向选择水平。此外,我们还发现了放宽选择和纯化选择的证据。我们认为,这一结果与这些基因在驯化综合征中的重要作用相一致。
“微藻”一词是指具有光合作用的单细胞细胞,包括来自两个生命领域的生物,即细菌(蓝藻)和来自初级(古藻体)或次级(例如,原生藻)内共生事件的各种真核生物演化支。尽管微藻在分类学上分布广泛,但它们具有一些共同的特征,使它们在某种程度上“相似”。产氧光合作用源自共同的起源,这使得微藻在营养网络中作为初级生产者占有重要地位。它们是单细胞的或形成非常小的菌落,其培养依赖于常见的方法,提供光、二氧化碳、水和营养物质。微藻可产生有价值的分子,如聚糖、脂质、色素、蛋白质等。因此,尽管“微藻”一词在植物学或分类学意义上并不恰当,但它在生态学和人类工业中有着其合法的含义。这既是将知识从一种生物体转移到另一种生物体时的弱点,也是解决类似生物技术问题时的优势。过去十年,发展以微藻为基础的产业已成为一项社会挑战。气候紧急情况和耕地压力使得每天对新型无碳和可持续生产的需求更加迫切。应用范围从食品、健康、绿色化学到生物燃料,有望利用从大气或碳排放行业捕获的二氧化碳生产生物分子。在这种背景下,“藻类行业”应运而生,聚集了专门从事藻类培养、收获、提取工艺和生物精炼的参与者。将野生藻类菌株转化为“藻类作物”,即“驯化”微藻,代表着一项艰巨的任务,因为可能存在感兴趣的初始特征,如相对较高的油、碳水化合物、色素等,但提高、可重复和可扩展产量的道路极具挑战性。农业领域可以吸取一些经验教训,为微藻领域的研究提供新的刺激。当人们在大自然中行走时,他或她会发现类似小麦、玉米、番茄、向日葵、油菜籽等的野生植物吗?与野生植物相比,农作物看起来又大又胖。此外,收获后,栽培种子很少逃逸并入侵未开垦地区。因此,植物驯化侧重于生产力和质量,而不是与野生群落竞争的适应性。野生植物和驯化植物之间的巨大差异表明,其他生命分支也应该可以获得产量的提高,请记住,栽培植物是二倍体,而目前大多数栽培的微藻是单倍体。
t检验是一种用于分析某个种群与另外两个种群之间的差异的统计方法,是对简单Fst分析的改进。此类方法已在其他方面得到成功应用,例如,用于分析藏族相对于中国人和欧洲人对高海拔的适应性(Yi et al., 2010),以及用于分析玉米(Zea Mays L.)的驯化过程,将大刍草与两个栽培品种种群进行比较(da Fonseca et al., 2015)。另一方面,由于选择压力导致的偏离中性进化模型的基因组区域遗传多样性改变可通过Tajima的D统计量来测量(Nielsen, 2001; Tajima, 1989)。在这种情况下,正值可能同时表示平衡选择和基因渗入的影响,而负值通常被推断为驯化选择的迹象。
人们经常提到的一个事实是,到本世纪中叶,全球人口增长率可能会超过全球农业生产增长率。此外,全球各地的生产力差异很大,但农业的大部分负担却落在少数物种的栽培上,这些物种大多位于不同于其驯化起源地的地方,而且往往受到截然不同的环境条件的影响( Fernie 和 Yan,2019 年)。最近的技术发展——主要是下一代测序技术的可及性和可负担性的增强——已经使我们能够鉴定出 100 多个驯化基因( Fernie 和 Yan,2019 年)。其中许多基因,例如与碎裂性、种子大小和休眠丧失相关的基因,在我们的作物物种中都得到了保留( Gross 和 Olsen,2010 年; Lenser 和 Theissen,2013 年)。然而,其他基因似乎只针对某些作物或作物类型,例如果实形状的改变(Xiao 等人,2008 年)或块茎的进化(Cheng 等人,2016 年;Hardigan 等人,2017 年)。确定基因后,它们可用于从头驯化,即对很少栽培或尚未驯化的物种进行遗传改良。关键是要确定表现出特定期望特性的物种,例如更高的产量和肥料利用率
摘要癌症是全球发病率和死亡率高的疾病之一。化学疗法仍然是大多数癌症患者的主要治疗选择,包括患有进行性,转移和复发性疾病的患者。迄今为止,数百种化学疗法药物用于治疗各种癌症,但是,抗癌效率和结果在很大程度上受到化学疗法相关毒性和获得的治疗耐药性的影响。天然产物(NP)奥多素的抗癌效率已被广泛研究。最近,已经证明Oridonin通过多种机制克服了抗药性,并具有尚未确定的BONA靶标。已经合成并筛选了数百种oridonin衍生物类似物(Oridonalogs),以提高效力,生物利用度和其他药物特性。,许多这些Oridonalogs已针对肿瘤生长抑制,克服治疗性的潜力和免疫调节进行了测试。这项简洁的审查旨在鉴于鉴定临床试验水平的候选药物,并承诺治疗渐进式罐头和逆转化学抗性,以总结该领域的进步。版权所有ª2020年,重庆医科大学。Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
驯化和作物改良 人类主导的驯化始于大约 12 000 年前的中东和新月沃地,随后传播到世界各地,包括中国、中美洲和安第斯山脉、近大洋洲、撒哈拉以南非洲和北美洲东部 [1-3]。尽管我们的标题很简单,但我们在这里尽可能区分驯化、多样化和作物改良事件,因为无论从进化还是表型角度来看,它们都是明显不同的过程 [4]。大规模调查显示,驯化植物种类涵盖约 160 个分类科,超过 2500 个物种经历了一定程度的驯化,约 300 个物种得到了完全驯化 [2、3、5]。目前,整合考古学、遗传学和基因组学证据的模型表明,驯化是一个多阶段过程,包括(i)开始栽培,(ii)所需等位基因频率的增加,(iii)驯化种群的形成,以及最后(iv)有意识的繁殖。尽管如此,由于存在多次驯化事件,并且驯化后与祖先物种的交换频繁,因此描绘许多物种的驯化历史非常复杂[6-8]。此外,值得注意的是,一些物种如Oryza nivara和巴西坚果是在没有驯化的情况下栽培的,并且对于与初始选择相关的遗传瓶颈已经有了深刻的分析[9]。总之,这些研究极大地增进了我们对性状进化的理解,并为驯化过程中的趋同进化和平行进化提供了相当多的见解[10]。例如,留绿基因 SGR 是一系列物种种子休眠的基础[11],番茄 (Solanum lycopersicum) 和辣椒 (Capsiscum annum) 中果实重量数量性状基因座子集映射到同一基因组区域[12],水稻 (Oryza sativa)、高粱 (Sorghum bicolor)、大麦 (Hordeum vulgare) 和小米 (Pennisetum glaucum) 的糯谷物改良性状均是由 Waxy 基因直系同源物的不同突变定义的[2]。与此相反,尽管最初认为驯化综合征经典性状的出现(如谷物种子落粒性的丧失)是平行进化的情况[13],但最近的遗传图谱研究表明,多种性状往往与非同源基因有关[14]。例如,玉米(Zea mays)的典型驯化基因 TEOSINTE BRANCHED 1(tb1)[15] 对粟的分枝影响较小[16],甚至在不同的大麦谱系中,不同的
驯化过程需要将野生形态快速转化为人类选择的栽培形态。这一过程通常通过改变基因调控来实现,然而,顺式和反式调控变异在作物果实驯化中的作用尚无明确模式。利用等位基因特异性表达和网络分析,我们描述了辣椒野生和栽培品种的调控模式和基因表达的遗传,辣椒是一种果实形态变化显著的作物。我们认为,与栽培形式相关的基因表达差异最好由顺式调控中心通过反式调控级联起作用来解释。我们表明,在栽培辣椒中,与果实形态相关的基因表达相对于野生近缘种的基因表达部分是隐性的,这与杂交果实表型一致。栽培辣椒果实成熟和生长基因表达的减少表明,在其驯化过程中发生了功能丧失的选择。反式调控变化是大多数表现出调控差异的基因的基础,并且对基因表达的影响比顺式调控变体更大。对选定的顺式调控基因(包括 ARP9 和 MED25)的网络分析表明,它们与许多参与器官生长和果实成熟的转录因子相互作用。与顺式调控变体相关的差异表达基因及其与下游反式作用基因的相互作用有可能驱动野生果实和栽培果实之间观察到的形态差异,并为辣椒驯化过程中的形态转变提供一种有吸引力的机制。