膜技术被视为一种环保且可持续的方法,在解决高能耗丙烯/丙烷分离过程中产生的大量能源损失方面具有巨大潜力。寻找用于这种重要分离的分子筛膜引起了极大的兴趣。在这里,一种氟化金属有机骨架 (MOF) 材料被称为 KAUST-7(KAUST:阿卜杜拉国王科技大学),具有明确的窄 1D 通道,可以根据尺寸筛分机制有效区分丙烯和丙烷,成功地被掺入聚酰亚胺基质中以制造分子筛混合基质膜 (MMM)。值得注意的是,KAUST-7 纳米粒子的表面功能化具有卡宾部分,可提供制造分子筛 MMM 所需的界面相容性,同时聚合物-填料界面的非选择性缺陷最少。具有高 MOF 负载(高达 45 wt.%)的最佳膜显示出 ≈ 95 barrer 的丙烯渗透率和 ≈ 20 的混合丙烯/丙烷选择性,远远超过了最先进的上限。此外,所得膜在实际条件下表现出坚固的结构稳定性,包括高压(高达 8 bar)和高温(高达 100°C)。观察到的出色性能证明了表面工程对于制备和合理部署用于工业应用的高性能 MMM 的重要性。
摘要:研究了基于原位形成的亚胺连接低聚物的各种坚固、结晶和多孔有机骨架。这些低聚物通过液-液界面反应通过协同的分子间氢键相互作用进行自组装。可溶性低聚物是具有多个未反应醛基的动力学产物,这些醛基充当氢键供体和受体,并引导所得低聚物组装成 3D 骨架。坚固的共价键和高度可逆的氢键的顺序形成增强了长程对称性并促进了大单晶的生成,其结构可通过单晶 X 射线衍射明确确定。独特的分级排列增加了亚胺键的空间位阻,从而阻止了水分子的攻击,大大提高了稳定性。骨架中的多个结合位点使得能够快速封存水中的微污染物。
混合玻璃的形成为加工块状金属有机骨架 (MOF) 提供了一种潜在途径,然而,只有少数 MOF 被证明是可熔的。对于不可熔的沸石咪唑酯骨架 ZIF-8,最近发现离子液体 (IL) 的加入可将熔化温度降低到热分解温度以下,从而能够形成 IL@ZIF-8 玻璃。本文报道了 IL 的加入对一些沸石咪唑酯骨架 (ZIF) 和其他 MOF 在加热时的焓响应的影响。对于 ZIF-62、ZIF-67、ZIF-76 和 MIL-68,金属位点的可及性和 MOF 的孔隙率决定了 IL@MOF 复合材料的可熔性。 IL 的加入使得 ZIF-76 玻璃得以形成,并显著降低了 ZIF-62 的熔化温度,但似乎无助于 ZIF-67 或 MIL-68 的熔化(在热分解之前)。尽管 IL 的热稳定性极限在控制 IL@MOF 复合材料的熔化窗口方面起着重要作用,但通过仔细选择熔化温度,可以在很大程度上避免熔化时的热分解和成分变化。IL 的加入似乎为熔化 MOF 提供了一种更通用的途径,但需要仔细适应特定的 MOF 架构。
转染后 48 小时收获细胞。胰蛋白酶消化后,进行 FITC-膜联蛋白 V 和碘化丙啶 (PI) 染色。使用流式细胞术用膜联蛋白 V-FITC 和 PI 的死细胞凋亡试剂盒 (Invitrogen,目录号:V13242) 分离凋亡细胞 (早期)。单克隆抗体使用与绿色荧光 FITC 染料结合的重组膜联蛋白 V 检测凋亡细胞中磷脂酰丝氨酸的外化,使用 PI 检测死细胞,其中 PI 将坏死细胞染成红色荧光。用两种探针处理后,凋亡细胞显示绿色荧光,死细胞显示红色和绿色荧光,活细胞几乎不显示荧光。Navios
摘要:锝-99( 99 Tc)主要以高锝酸盐( 99 TcO 4 − )形式存在,是人工核裂变产生的核废料中一种难以处理的污染物。从核废料和受污染地下水中选择性去除 99 TcO 4 − 非常复杂,因为(i)高放射性废液的酸性和复杂性;(ii)低活度储罐废物(例如汉福德的储罐废物)和萨凡纳河等地的高放射性废物的碱性环境;和(iii) 99 TcO 4 − 可能会泄漏到地下水中,由于其高流动性,有造成严重水污染的风险。本综述重点介绍先进多孔材料的最新发展,包括金属有机骨架(MOF)、共价有机骨架(COF)及其无定形对应物多孔有机聚合物(POP)。这些材料在吸附 99 TcO 4 − 和类似的氧阴离子方面表现出卓越的效果。我们全面回顾了这些阴离子与吸附剂的吸附机理,采用了宏观批量/柱实验、微观光谱分析和理论计算。最后,我们提出了对未来潜在研究方向的看法,旨在克服当前的挑战并探索该领域的新机遇。我们的目标是鼓励进一步研究开发先进的多孔材料,以有效地管理 99 TcO 4 −。关键词:核废料处理、99 TcO 4 − 去除、金属 − 有机骨架、共价有机骨架、有机聚合物■ 介绍
摘要 人工智能(AI)的进步和各种训练数据的激增促进了人工智能生成内容(AIGC)的发展。尽管效率很高,但人工智能模型固有的不稳定性对创建用户特定内容提出了挑战,尤其是在为用户创建虚拟形象时。为了解决这个问题,本文将无线感知(WP)与AIGC相结合,并引入了一个统一框架WP-AIGC,该框架利用WP获得的用户骨架来指导AIGC,从而生成与用户实际姿势相符的虚拟形象。具体而言,WP-AIGC首先采用一种新颖的多尺度感知技术来感知物理世界中的姿势并构建用户骨架。然后,将骨架和用户的要求传达给AIGC,从而指导虚拟形象的创建。此外,WP-AIGC可以根据用户反馈调整分配给感知和AIGC的计算资源,从而优化服务。实验结果验证了该服务的有效性。在有限的计算资源下,当四条链路参与感知时,WP-AIGC 可实现最佳 QoS 3.75。
分割鳄鱼木乃伊以显示纺织品、皮肤、骨头、内脏和骨架。图片来源:Camille Berruyer 和 Paul Tafforeau (ESRF)
对马的骨骼结构或骨架进行细致的解剖学描述;对该高贵动物的运动能力或肌肉进行科学解释和说明。
与葛兰素史克在广泛传染病疫苗计划中合作开发的流感候选疫苗 德国图宾根/美国波士顿——2022 年 2 月 10 日——CureVac NV(纳斯达克股票代码:CVAC)是一家全球生物制药公司,正在开发基于信使核糖核酸(“mRNA”)的新型变革性药物,该公司今天宣布,它已经对与葛兰素史克合作开发的季节性流感第二代 mRNA 候选疫苗 CVSQIV 的 1 期研究中的第一位参与者进行了给药。这种差异化的多价候选疫苗具有多种非化学修饰的 mRNA 构建体,可诱导针对四种不同流感毒株相关靶标的免疫反应。使用可定制且快速生产的 mRNA 来治疗流感可以更快地开发和交付可能改进的候选疫苗,甚至可以为即将到来的流感季节提供短期毒株更新。