等离子辅助燃烧的详细动力学机制包含许多物种和反应,它们模拟了非平衡等离子体过程和碳氢化合物氧化之间的相互作用。虽然物理上准确且全面,但这种详细的机制对于模拟非稳态多维等离子体放电及其对实际设备中反应混合物的影响并不实用。在这项工作中,我们开发并应用了一种新方法,用于将大型详细等离子辅助燃烧机制简化为较小的骨架机制。该方法扩展了带误差传播的有向关系图 (DRGEP) 方法,以考虑还原过程中等离子体放电的能量分支特性。确保电子在各种类型的撞击过程(即振动和电子激发、电离和撞击解离)中损失的能量相对比例具有严格的误差容差,是保持骨架机制中正确的放电物理的关键。为此,在 DRGEP 中定义并纳入了包括能量转移在内的新目标。这种新型框架称为 P-DRGEP,其性能通过纳秒重复脉冲放电模拟乙烯-空气点火进行评估,条件与超音速燃烧和超燃冲压发动机腔内火焰保持有关,即温度从 600 K 到 1000 K、压力为 0.5 atm,当量比在 0.75 到 1.5 之间。P-DRGEP 被发现大大优于应用于等离子辅助点火的传统还原方法,因为它可以生成更小的骨架机制,误差显著降低。对于目标条件下的乙烯-空气点火,P-DRGEP 生成具有 54 种物质和 236 种反应的骨架机制,使点火模拟的计算速度提高了 84%,同时保证所需时间的误差低于 10%
RailScoders项目。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1个红宝石和ruby在轨道上。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 Ruby的简短历史。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3轨道上的红宝石是什么?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。建造铁路造型器所需的4个软件。。。。。。。。。。。。。。。。。。。。。。。。。。。。7升级导轨。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8安装Ruby,Rails和MySQL。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8安装在Windows上。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 9 Mac OS X。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。8安装在Windows上。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 Mac OS X。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。9 Mac OS X。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 Linux。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 12创建Rails应用程序的骨架。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 14观看Rails Logfiles。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。11 Linux。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12创建Rails应用程序的骨架。。。。。。。。。。。。。。。。。。。。。14观看Rails Logfiles。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16设置数据库。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17创建数据库。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18配置导轨以使用数据库。。。。。。。。。。。。。。。。。。。。。。。。18测试数据库。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19摘要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20
摘要:肽核酸(PNA,具有肽骨架而非磷酸核糖骨架的核酸类似物)已成为反基因或反义治疗、剪接调节剂或基因编辑中的有前途的化学药剂。与 DNA 或 RNA 药剂相比,它们的主要优点是生化稳定性和整个骨架上没有负电荷,导致与它们杂交的链的静电相互作用可以忽略不计。因此,PNA 链与 DNA 或 RNA 链的杂交会导致更高的结合能和熔化温度。然而,缺乏天然转运体需要形成含 PNA 的嵌合体或制定纳米特定细胞递送方法。在这里,我们着手探索在诊断应用中使用基于 PNA 的成像剂所取得的进展,并重点介绍选定的发展和挑战。■ 简介
目前,许多含有喹啉骨架的天然产物和合成衍生物的研究引起了学者们的注意,因为它们表现出广泛的生物和药学活性。例如,抗菌、抗氧化、抗癌、抗炎、抗疟、抗真菌和抗利什曼原虫活性已得到充分研究。12 Shang 等人全面综述了从天然来源的化合物中分离出来的、具有生物活性潜力的以喹啉部分为核心骨架的生物碱。13 该综述全面地分为两个重点部分。首先将讨论各种合成策略,以突出原始反应程序以及最近文献中与所有合成策略相关的修改。然后将探索新的具有药学和生物活性的喹啉(图 2)。
配位聚合物是由金属离子与无机/有机配体通过配位键形成的化合物,该类化合物由于结构可调、功能多样而受到广泛的研究,在配位聚合物的基础上合成了多种相关化合物,其中金属有机骨架(MOF)是由金属离子或金属团簇与有机配体配位而形成的具有多孔结构的配位框架材料。MOF因其结构特点而受到广泛关注,与纯无机分子筛和多孔碳材料相比,MOF具有以下优势:(1)MOFs的高度结晶状态非常有利于用单晶和多晶衍射方法确定其精确的空间结构;(2)MOFs具有高的孔隙率和大的比表面积;(3)MOFs可以由各种不同的金属离子和有机桥联配体组成,结构易于设计; (4)有机配体结构中的s单键赋予MOFs一定的灵活性,使其具备特征功能;(5)结构易于改性:通过修改MOFs骨架中的金属中心和有机配体,可以调整MOFs骨架及孔表面的结构,从而赋予MOFs多种功能。MOFs在吸附、分离、催化、传感、药物输送等方面表现出了优异的性能和广阔的应用前景。在制药领域,MOFs因具有高孔隙率、可变孔、
利用选择标记鉴定转化植物,并筛选 T-DNA 拷贝数。通过扩增子测序鉴定编辑的 T0 植物(Clement 等人,2019 年;Illumina MiSeq 系统指南,2018 年;Illumina MiSeq 系统指南,2019 年),自交,并通过扩增子测序分析所得的 T1 植物以确认编辑。进行了额外的 PCR 检测,以确认不存在 T-DNA 插入物和质粒骨架(Applied Biosystems 用户公告 #2)。选择包含所需编辑但没有 T-DNA 或质粒骨架的纯合 T1 植物 P227933.30 进行延续,并将其命名为 GM200007。T1 植物不含外来 DNA,在 [ ] 基因中含有纯合缺失。表 1. 用于创建 GM200007 大豆的转化载体 F137620 的遗传元件
沸石是一种结晶多孔的铝硅酸盐,几十年来一直是化学工业的重要组成部分,对其结构进行微调 1–6 是开发优质功能材料的一种有前途的方法。Al 3+ 同晶取代沸石骨架的四面体位点 (T 位点) 可一对一地提供一个负电荷,该负电荷可作为单价阳离子的离子交换位点。沸石表面通过离子交换捕获二价阳离子有利于水净化 7,8 和生产独特的催化剂,其中沉积的二价金属阳离子可作为活性位点。9,10 为了实现这些目标,考虑到广为接受的 Loewenstein 规则,根据该规则,由于稳定性差,最近相邻的 Al 对 (即 Al–O–Al 序列) 无法形成,11 沸石骨架需要通过由第二位组成的离子交换位点来富集
重组 RSV 病毒的组装和拯救 先前描述了重组 A2-line19F 的拯救,该病毒在 A2 骨架中表达 mKate2 和 RSV 菌株 line19 融合蛋白 [ 16 ]。为了生成在 A2-line19F 骨架内表达修饰的 G 蛋白的重组病毒,从 GenScript 获得了合成的 G 核苷酸序列,其两侧是 SacI-SacII 限制性位点,用于将相应的 G 基因克隆到 pSynkRSV-A2-line19F 细菌人工染色体中。得到的菌株 A2-line19F-G155 缺失了 G 蛋白粘蛋白结构域,而菌株 A2-line19F-G155S 缺失了 G 蛋白粘蛋白结构域和跨膜结构域,因此它只表达缺乏粘蛋白的分泌性 G 蛋白(图 1 和图 2)。为了回收重组病毒,将 BSR-T7/5 细胞与 RSV 反基因组
由于核苷酸的杂环,核酸会吸收紫外线 (UV) 光;糖磷酸骨架对吸收没有贡献。DNA 和 RNA 的最大吸收波长均为 260nm (λmax = 260nm),每个碱基都有一个特征值。