基因治疗是使用自体造血干细胞移植的一级免疫降低(PID)的创新治疗方法,可通过添加或编辑的添加或编辑版本的缺失或出现导致PID的基因的添加或编辑版本来提供干细胞。对1990 - 2000年的PID基因疗法的初步研究,使用了整合鼠γ-逆转录病毒载体。这些研究在许多情况下显示出临床效率,尤其是在再灌注细胞之前的骨髓细胞减少条件条件下,这些载体引起了几名患者的遗传毒性和白细胞增生性疾病的发育。最近的研究使用了慢病毒载体,其中长时间的增强子元素在逆转录过程中重复自我激活(“ sin”载体)。这些犯罪载体具有出色的安全性,并且尚未据报道引起任何临床上显着的遗传毒性。基因疗法已成功治疗了几种PID,包括腺苷脱氨酶严重的合并免疫耐药性(SCID),X连锁SCID,Artemis SCID,Wiskott-Aldrich综合征,X连接的慢性肉芽肿性疾病和白细胞粘附性降低效率。总的来说,在近几十年来,PID的基因治疗在效率和安全性方面已经取得了比同种异体HSCT相等或更好。方法的进一步改善应导致基因治疗的更一致和可靠的效率,以获得越来越多的PID列表。
转录后基因调节,包括RNA结合蛋白(RBP),最近被描述为癌症的重要机制。我们以前已经确定了一组RBP,这些RBP在B细胞急性淋巴细胞白血病(B-All)中具有高度失调的RBP,其预后较差。在这里,我们试图通过在B-all细胞系中进行重点的CRISPR辍学屏幕来在功能上表征这些失调的RBP基因,从而发现对包括EIF3E,EPRS和USO1在内的多种基因的依赖性。验证了我们的发现,CRISPR/CAS9介导的USO1在MLL易位的B-ALL细胞中造成的破坏可降低细胞生长,促进细胞死亡并改变细胞周期。对USO1缺陷细胞的转录组分析显示,与MTOR信号传导,RNA代谢和MYC靶标有关的途径发生了变化。此外,这些实验样品中USO1调节的基因在B-All患者收集的主要样本中与USO1表达显着,并一致相关。最后,我们发现USO1的损失抑制了来自Cas9 -EGFP小鼠的原代骨髓细胞中MLL的菌落形成。一起,我们的发现证明了一种执行集中的亚基因组CRISPR筛选的方法,并突出了MLL转移的B-All中推定的RBP脆弱性,从而鉴定了该疾病中的潜在治疗靶标。
二甲双胍是目前用于治疗2型糖尿病的Biguanide。除了其抗血糖作用外,据报道,二甲双胍可诱导不同的细胞多效性作用,具体取决于浓度和治疗时间。在这里,我们报告了一种二甲双胍(0.5 mm)的施用在体外对BJ人成纤维细胞具有放射保护作用,从而增加了DNA损伤修复并增加了细胞核中SOD1的表达。出色的是,二甲双胍(200 mg/kg)仅在野生型129/v小鼠中仅3天给药,减少了骨髓细胞中微核形成的形成,而在骨髓和肺组织中,与对照组的辐射量相比,在亚每个剂量和1次总体下,在3.10%的总体下,结肠和肺组织中的DNA损伤相比,降低了结肠和肺组织中的DNA损伤。接下来,我们在NASA空间辐射实验室(NSRL)上先用二甲双胍预处理,然后将129/SV小鼠暴露于银河宇宙射线模拟(GCRSIM)。我们发现二甲双胍的治疗降低了结肠和肺组织中骨髓微核和DNA损伤的存在,并增加了8-氧气的DNA DNA糖基酶-1(OGG1)表达。我们的数据通过间接调节涉及细胞排毒的基因表达而不是其对线粒体的影响,从而突出了二甲双胍的辐射保护作用。
摘要。细胞移植学的最重要任务是在从供体接收骨髓细胞之前激活间充质干细胞(MSC)的增殖潜力。当染色体突变的概率仍然很低时,这对于增加足够数量的MSC是必不可少的。可以通过暴露于可见的和近红外范围中的低强度激光辐射来使用光生物调节(PBM)激活细胞的增殖活性。最近,在体外表明,PBM和中等激光诱导的加热的组合可导致MSC集落形成的效率显着提高。该研究的主要目标是找到这种综合效果的最佳参数,并回答有关热加热和激光辐射有协同作用的可能性的问题。MSC用于实验。MSC暴露于中等功率的短期激光辐射,波长为980 nm,能量密度为68-340 J/cm 2,并伴有细胞悬浮液的中等加热。拍摄了带有生长菌落的小瓶,然后使用特殊的数字图像处理方法确定了单个菌落中的细胞数量,大小和单个菌落数。发现,在最佳参数下,暴露于中等功率的激光辐射会导致菌落数量增加4.1±0.5倍,而与对照相比,细胞总数增加了3.3±0.4倍。已经表明,由于光生物调节和中等加热的协同作用,细胞数的增加发生。激光刺激MSC后菌落形成的激活是由于细胞从最初形成的菌落迁移而迁移,随后通过分离的细胞迁移了其他菌落。
摘要:母乳(BRM)不仅是营养供应,而且还包含各种各样的细胞。据估计,人乳中多达6%的细胞具有间质干细胞的特征(MSC)。可用的数据还表明,这些细胞是多能的,并且能够自我更新和与其他单元的分化。在这篇综述中,我们比较了不同的特征,例如CD标记,分化能力和从人类母乳(HBR-MSC)与人骨髓(HBMSC),沃顿果冻(WJMSC)和人脂肪组织(HADMSC)的干细胞(HBR-MSC)(HBMSC)(HBMSC)(HBMSC)(HADMSC)进行了比较。文献综述表明,人类母乳衍生的干细胞专门表达一组细胞表面标记,包括CD14,CD31,CD45和CD86。重要的是,确定了一组CD13,CD29,CD44,CD44,CD105,CD106,CD146和CD166的标记物,在四个干细胞来源中很常见。WJM-SC,HBMSC,HADMSC和HBR-MSC有效地分化为中胚层,外胚层和内胚层细胞谱系。HBR-MSC在分化为神经干细胞,神经元,脂肪细胞,肝细胞,软骨细胞,骨髓细胞和心肌细胞的能力使这些细胞成为了再生药物中的干细胞来源,而从常用使用的bone bone Marrowsective conceptive则隔离了干细胞。,尽管自养母乳衍生的干细胞是哺乳期女性的可访问来源,但母乳可以被视为具有高分化潜力的干细胞来源,具有任何道德问题。
靶向免疫疗法已成为癌症治疗的一种变革性方法,它能增强对肿瘤细胞的特异性,并最大限度地减少对健康组织的损害。肿瘤免疫系统的靶向治疗已在临床上得到应用,在早期和晚期恶性肿瘤中均表现出显著的抗肿瘤活性,从而提高了长期生存率。肿瘤免疫系统最常见和最重要的靶向疗法是通过使用检查点抑制剂抗体和嵌合抗原受体 T 细胞治疗来执行的。然而,当使用免疫治疗药物或联合治疗骨肉瘤等实体肿瘤时,由于疗效有限或诱导严重的细胞毒性而出现挑战。利用纳米颗粒药物输送系统靶向肿瘤相关巨噬细胞和骨髓来源的抑制细胞是一种有前途且有吸引力的免疫治疗方法。因为这些骨髓细胞在肿瘤微环境中往往发挥免疫抑制作用,促进肿瘤进展、转移和产生耐药性,而髓系细胞又具有吞噬纳米粒子和微粒的倾向,是合理的治疗靶点。因此,我们从纳米粒子促进免疫原性细胞死亡、调节肿瘤相关巨噬细胞各细胞亚群比例、与髓系细胞受体配体相互作用、激活免疫刺激信号通路、改变髓系细胞表观遗传学、调节免疫刺激强度等角度,探讨了纳米药物靶向髓系细胞增强骨肉瘤免疫治疗的机制及相关治疗策略如何与免疫治疗相适应,并探索了基于纳米药物的免疫治疗的临床应用。
简介戴蒙德-布莱克凡贫血 (DBA) 是一种罕见的先天性骨髓衰竭疾病,通常在婴儿期表现为大细胞性贫血和红细胞减少症 (1, 2)。DBA 与腭裂、肾脏和心脏缺陷、生长迟缓等身体异常以及某些癌症风险增加有关 (3, 4)。虽然发育不全性贫血是儿童的主要特征,但老年患者也可能出现骨髓细胞减少、全血细胞减少和免疫缺陷,表明造血干细胞 (HSC) 受损 (5, 6)。经典的 DBA 是由 20 个小亚基或大亚基核糖体蛋白 (RP) 基因中的 1 个发生种系杂合功能丧失突变引起的,导致核糖体的生物合成和/或功能缺陷。较不常见的是,GATA1 (7)、EPO (8)、ADA2 (9) 和 TSR2 (10) 的突变会导致 DBA 样增生性贫血。最常见的 DBA 基因是 RPS19,大约 25% 的患者检测到突变。接下来最常见的突变基因是 RPL5 (~7%)、RPS26 (~7%) 和 RPL11 (~5%) (1)。目前对 DBA 的治疗方法包括铁螯合慢性红细胞输注;糖皮质激素(可促进红系祖细胞扩增)和异基因造血干细胞移植 (HSCT),所有这些疗法都与严重毒性有关。DBA 相关红系衰竭的机制尚不完全清楚。对患者造血干细胞和祖细胞 (HSPC) 的分析显示,红系祖细胞扩增存在缺陷,并伴有红系祖细胞病理性凋亡 (1, 11–14)。可能的解释包括整体翻译受损 (15, 16);BAG1 (17)、CSDE1 (17) 和 GATA1 (18, 19) 等红细胞生成所必需的转录本的选择性翻译受损;由于
简介戴蒙德-布莱克凡贫血 (DBA) 是一种罕见的先天性骨髓衰竭疾病,通常在婴儿期表现为大细胞性贫血和红细胞减少症 (1, 2)。DBA 与腭裂、肾脏和心脏缺陷、生长迟缓等身体异常以及某些癌症风险增加有关 (3, 4)。虽然发育不全性贫血是儿童的主要特征,但老年患者也可能出现骨髓细胞减少、全血细胞减少和免疫缺陷,这表明造血干细胞 (HSC) 受损 (5, 6)。经典的 DBA 是由 20 个小亚基或大亚基核糖体蛋白 (RP) 基因中的 1 个发生种系杂合功能丧失突变引起的,导致核糖体的生物合成和/或功能缺陷。较不常见的是,GATA1 (7)、EPO (8)、ADA2 (9) 和 TSR2 (10) 的突变会导致 DBA 样增生性贫血。最常见的 DBA 基因是 RPS19,大约 25% 的患者检测到突变。接下来最常见的突变基因是 RPL5 (~7%)、RPS26 (~7%) 和 RPL11 (~5%) (1)。目前对 DBA 的治疗方法包括铁螯合慢性红细胞输注;糖皮质激素(可促进红系祖细胞扩增)和异基因造血干细胞移植 (HSCT),所有这些疗法都与严重毒性有关。DBA 相关红系衰竭的机制尚不完全清楚。对患者造血干细胞和祖细胞 (HSPC) 的分析显示,红系祖细胞扩增存在缺陷,并伴有红系祖细胞病理性凋亡 (1, 11–14)。可能的解释包括整体翻译受损 (15, 16);BAG1 (17)、CSDE1 (17) 和 GATA1 (18, 19) 等红细胞生成所必需的转录本的选择性翻译受损;由于
抽象的白介素6(IL-6,也称为B细胞刺激因子2/干扰素P2)支持粒细胞/巨噬细胞祖体的增殖,并间接支持来自正常小鼠斑球细胞培养的多梯性和胚细胞菌落的形成。我们在这里报告说,IL-3和IL-6协同作用是为了支持培养中鼠多重祖细胞的扩散。在注射5-氟尿嘧啶(150 mg/kg)后4天从小鼠中分离出的脾细胞的总菌落形成时间,在包含这两种淋巴细胞的培养物中相对于由两个因素支持的两种培养物的培养物显着缩短。培养中单个爆炸细胞集菌落的序列观测(映射)表明,在IL-3存在下随机时间间隔后出现了爆炸细胞菌落。单独使用IL-6中的平均外观时间有些延迟,在包含这两个因素的培养物中,相对于在单个淋巴因子的存在下,相对于在存在的培养物中,多曲线爆炸细胞菌落的出现显着加速。在第2天的培养物中-5-氟尿嘧啶骨髓细胞中,IL-6无法支持菌落形成;仅IL-3支持形成一些粒细胞/宏观噬菌体菌落,但是因素的组合起作用协同作用,以产生多曲线和各种其他类型的菌落。在该系统中,IL-LA也与IL-3协同作用,但效果较小,没有看到多片菌落。共同这些结果表明,IL-3和IL-6协同作用以支持造血祖细胞的扩散,并且至少部分效应是由于单个干细胞的GO时期下降而导致的。
几十年来,在急性骨髓细胞白血病的治疗中仅限于围绕细胞链球菌/蒽环类药物的骨骼周围的变化,出现了靶向疗法。这些疗法首先基于单克隆抗体,也依赖于各种分子异常的特定抑制剂。由于这些新疗法受到高度复发率的限制,由于白血病干细胞的内在化学疗法和免疫抵抗力,以及通过克隆进化获得这些耐药性,因此已经观察到了显着但适度的预后改善。复发也受到骨髓基质微环境和免疫效应子的pro或抗肿瘤信号之间平衡的影响。鉴于白血病固有的肿瘤异质性以及这种类型的肿瘤能够的克隆漂移,靶向治疗方案的位置应该是什么?通过单细胞分析和下一代测序的新方法精确定义了克隆异质性和进化,从而导致了个性化和时间变量的适应处理。的确,自发或在治疗选择压力下,白血病的进化是非常复杂的现象。线性进化的模型被遗忘了,因为诊断和复发时样品的单细胞分析表明,肿瘤逃避治疗是从祖先和末端克隆发生的。此外,单细胞技术还可以识别每个细胞的性质,并可以在同一样品上分析肿瘤细胞及其环境。单细胞技术对不同肿瘤亚群的轨迹的测定允许鉴定累积对化学/免疫疗法抗性因子(“泛抗克隆”)的克隆,从而可以选择最有可能消除这些细胞的组合剂。因此,可以评估白血病应力诱导其功能改变的免疫效应子(T淋巴细胞,天然杀伤细胞)的种群。最后,单细胞技术是评估可测量残留疾病的宝贵工具,因为不仅能够量化,而且还可以根据对剩余白血病细胞的免疫化学疗法的敏感性来确定最合适的治疗方法。