大量研究已经概述了适当的光谱在通过自旋链镜像反转实现量子信息传输中的关键作用。通过结合数值和分析方法,研究人员已经确定了有利于完美或近乎完美状态转移(PST-PGST)的最近邻耦合和现场能量的配置。一个特别有效的模型,源自等距光谱(Christandl 等人),依赖于跨位点的强烈不均匀耦合,同时保持局部磁场不变。通过使用进化数值方法,特别是定制的遗传算法,我们发现了一种替代光谱。这种替代光谱仅通过调节现场能量即可实现高保真度的传输。这个光谱,最多大约一个位点,可以实现完全均匀的耦合,从而简化了实验要求。我们还使用了逆特征值方法中的辅助数值方法来提供辅助分析,以区分准完美状态转移 (QPST) 和 PST,并强调两者之间的权衡。通过这些分析,我们可以提出替代方案,为实验实施提供潜在优势,同时仍以完美或近乎完美的状态转移为目标。
混合旋转机械设置为量子科学和技术提供了多功能平台,但是改善自旋光子以及此类系统的自旋旋转耦合仍然是一个至关重要的挑战。在这里,我们提出并分析了一种实验可行且简单的方法,用于指数增强在混合机械设置中仅使用线性资源(仅使用线性资源)在混合自旋机械设置中的旋转声和介导的自旋旋转相互作用。通过用时间依赖的泵调节机械悬臂的弹簧常数,我们可以将可调且非线性(两频)驱动器获取到机械模式,从而扩大机械零点的波动并直接增强自旋量耦合。此方法允许自旋机械系统从弱耦合方案驱动到强耦合方案,甚至是Ultrastrong耦合方案。在色散状态下,该方法产生了遥远固态旋转之间声子介导的自旋旋转相互作用的大大增强,通常比没有调节的大两个数量级。为例,我们表明,即使在存在大量耗散的情况下,提议的方案也可以应用于具有高保真度的多个旋转状态。
高保真量子纠缠是量子通信和分布式量子计算的关键资源,可实现量子态隐形传态、密集编码和量子加密。然而,通信信道中的任何退相干源都会降低纠缠保真度,从而增加纠缠态协议的错误率。纠缠纯化提供了一种缓解这些非理想性的方法,它将不纯态提炼成更高保真度的纠缠态。在这里,我们展示了两个远程超导量子节点之间共享的贝尔对的纠缠纯化,这两个节点通过一条 1 米长的中等损耗超导通信电缆连接。我们使用纯化过程来校正由电缆传输引起的主要振幅阻尼误差,对于更高的阻尼误差,保真度最高可提高 25%。纯化实现的最佳最终保真度为 94.09!0.98%。此外,我们同时使用动态解耦和 Rabi 驱动来保护纠缠态免受局部噪声的影响,将有效量子比特失相时间增加了 4 倍,从 3 微秒增加到 12 微秒。这些方法展示了在超导量子通信网络中生成和保存非常高保真度纠缠的潜力。
Pfu DNA 聚合酶是一种源自超嗜热古菌 Pyrococcus furiosus 的耐热酶,因其高保真度和强大的加工性而广受认可。它的 3'-5' 核酸外切酶活性使其成为正确扩增短链和复杂 DNA 链不可或缺的酶。Pfu DNA 聚合酶的这些生化特性促进了其提取和生产方法的重大进步。本综述涵盖了一些传统的纯化方法,包括蛋白质纯化和亲和层析,以及重组基因表达、自动化生产系统和基于膜的技术的最新进展。最近开发了新的酶工程方法,例如 CRISPR-Cas9 介导的基因优化,这提高了提取效率的标准以满足新兴需求。曾经具有挑战性的 Pfu DNA 聚合酶生产已通过在实验室和商业规模的大肠杆菌中重组表达得到了显着简化。涉及 IPTG 浓度和响应面方法的优化技术已将产量提高了 30%。自诱导意味着可以实现更高的生物量输出。如今,Pfu DNA 聚合酶的应用范围从标准 PCR 到分子生物学、法医分析、临床微生物学和生物技术领域的高级临床诊断。
半导体量子点自旋量子比特是一种很有前途的量子计算平台,因为它们可扩展并拥有较长的相干时间。然而,为了充分发挥这一潜力,量子纠错和高效算法需要高保真度的信息传输机制。在这里,我们展示了半导体量子点电子自旋链中绝热量子态转移的证据。通过绝热修改交换耦合,我们在不到 127 纳秒的时间内实现了远距离电子之间的单自旋态和双自旋态转移。我们还表明,这种方法可以级联用于长自旋链中的自旋态转移。基于模拟,我们估计,对于本文研究的实验参数,正确转移单自旋本征态和双自旋单重态的概率可以超过 0.95。未来,将需要状态和过程层析成像来验证保真度超过经典界限的任意单量子比特态的转移。绝热量子态转移对噪声和脉冲定时误差具有鲁棒性。该方法对于基于门的量子计算的大型自旋量子比特阵列中的初始化、状态分布和读出非常有用。它还为半导体量子点自旋量子比特中的通用绝热量子计算开辟了可能性。
具有高电子迁移率的二维硒化铋 (Bi 2 O 2 Se) 在未来高性能、柔性电子和光电子器件中具有优势。然而,薄片 Bi 2 O 2 Se 的转移相当具有挑战性,限制了其机械性能的测量和在柔性器件中的应用探索。这里,开发了一种可靠有效的聚二甲基硅氧烷 (PDMS) 介导方法,可以将薄片 Bi 2 O 2 Se 薄片从生长基板转移到目标基板(如微机电系统基板)上。转移的薄片的高保真度源于 PDMS 薄膜的高粘附能和柔韧性。首次通过纳米压痕法实验获得了二维 Bi 2 O 2 Se 的机械性能。研究发现,少层 Bi 2 O 2 Se 具有 18–23 GPa 的二维半导体固有刚度,杨氏模量为 88.7 ± 14.4 GPa,与理论值一致。此外,少层 Bi 2 O 2 Se 可承受 3% 以上的高径向应变,表现出优异的柔韧性。二维 Bi 2 O 2 Se 的可靠转移方法和力学性能记录的开发共同填补了这种新兴材料力学性能理论预测与实验验证之间的空白,并将促进基于二维 Bi 2 O 2 Se 的柔性电子学和光电子学的发展。
2.活动 ①超导量子计算机 开发出独创的64量子比特全栈量子计算机。 • 开发出64量子比特量子计算机“A”,并将其实现云服务。 • 富士通开始运行基于“A”技术开发的第二台量子计算机。 • 大阪大学也开始提供使用RIKEN 64量子比特芯片的云服务。 ②光量子计算机 成功开发出光量子计算机 • 开发出可以在100MHz系统时钟下计算连续变量的线性代数运算的光量子计算机。 • 在应用研究方面,提供了由云系统和软件开发工具包组成的量子计算机平台。 ③半导体量子比特 实现高保真度硅5量子比特 • 通过减少量子设备中门操作的误差,实现了5量子比特的世界最高保真度(>99.99%)。 (常规>99.9%) ④量子计算理论与软件 开发了用于模拟大规模量子系统的量子电路设计方法 • 开发了一种通用的、实用的方法,使量子计算机能够在紧凑的量子程序中高效地模拟大规模量子系统。 • 能够以比以前高100倍的精度计算量子系统的动力学。
越来越多的证据指向AFIB发病机理中的免疫系统3,特别是巨噬细胞4。在最近的一项研究中,我们观察到AFIB患者心房组织4的炎症性巨噬细胞和心房纤维化的扩大。为了更好地剖析巨噬细胞,纤维化和AFIB之间的关系,我们开发了一种小鼠模型,该模型通过结合常见的临床危险因素来概括人AFIB:高血压,肥胖和二尖瓣反流(称为荷马)。通过单细胞转录组学比较了人类与AFIB和荷马小鼠的心房组织,记录了AFIB动物模型的高保真度。我们确定了骨桥蛋白,在人类和小鼠中由SPP1编码为SPP1,是AFIB患者和荷马小鼠4的招募心房巨噬细胞中的最高上调基因4。骨桥蛋白是一种保守的多效性基质蛋白,结合了几种整合素和CD44家族受体。巨噬细胞衍生的骨桥蛋白刺激成纤维细胞产生更多的基质蛋白,并且与几种慢性纤维化疾病的进展5。心脏中的纤维化导致心房组织的异质性,它阻碍了均匀的电导传导,并充当AFIB 6的结构底物。最值得注意的是,单核细胞衍生的巨噬细胞中骨桥蛋白的转基因缺失减少了心房纤维化和荷马小鼠4。
硬件在环 (HIL) 或控制器在环仿真是一种用于开发和测试控制器和保护系统的技术。目标是验证和认证控制器和保护系统软件程序的功能、性能、质量和安全性。为了实现这一点,被测的实际控制和保护设备通过电流和电压接口连接到模拟器,就像在现实生活中一样。模拟器以高精度和高保真度模拟模型系统在正常和故障条件下的稳态和瞬态行为。通过重现现实,控制器被“欺骗”相信它已连接到真实的物理系统。然后就可以获得在任何操作条件下测试控制器和保护设备所需的所有灵活性。电力硬件在环 (PHIL) 是扩展到电力组件的 HIL 概念。在 PHIL 仿真中,I/O 需要高功率流来测试电力转换器、发电机、FACTS 等。成功可靠地实施 PHIL 和 HIL 仿真需要合理的模型、快速的程序执行、反应时间低于几微秒以及快速的 I/O 通信,因此控制器和保护系统在与实际提交的条件相同的条件下进行测试。您还需要一组工具来监控和与模拟器和可视化工具交互以解释结果(范围、图表、数据记录等)。除了可扩展性之外,这些是 OPAL-RT 的 eMEGAsim (tm) 实时数字模拟器的主要功能。
在基于酉门的量子设备上实现非酉变换对于模拟各种物理问题(包括开放量子系统和次归一化量子态)至关重要。我们提出了一种基于膨胀的算法,使用仅具有一个辅助量子位的概率量子计算来模拟非酉运算。我们利用奇异值分解 (SVD) 将任何一般量子算子分解为两个酉算子和一个对角非酉算子的乘积,我们表明这可以通过 1 量子位膨胀空间中的对角酉算子来实现。虽然膨胀技术增加了计算中的量子位数,从而增加了门的复杂性,但我们的算法将膨胀空间中所需的操作限制为具有已知电路分解的对角酉算子。我们使用此算法在高保真度的量子设备上准备随机次归一化两级状态。此外,我们展示了在量子设备上计算的失相通道和振幅衰减通道中两级开放量子系统的精确非幺正动力学。当 SVD 可以轻松计算时,所提出的算法对于实现一般的非幺正运算最为有用,在嘈杂的中型量子计算时代,大多数运算符都是这种情况。