摘要 — 量子密钥分发 (QKD) 网络有可能在不久的将来得到广泛部署,为数据通信提供长期安全性。鉴于高昂的价格和复杂性,多租户已成为 QKD 网络运营的一种经济高效的模式。在这项工作中,我们专注于解决 QKD 网络的在线多租户配置 (On-MTP) 问题,其中多个租户请求 (TR) 动态到达。On-MTP 涉及调度多个 TR 并将从 QKD 网络派生的不可重复使用的密钥分配给多个 TR,其中每个 TR 可被视为具有专用密钥需求的高安全性需求组织。量子密钥池 (QKP) 构建在 QKD 网络基础设施上,以提高密钥的管理效率。我们使用不同的图像为 QKP 的密钥资源和 TR 的密钥需求建模。为了实现高效的 On-MTP,我们对基于启发式和强化学习 (RL) 的 On-MTP 解决方案进行了比较研究,其中提出了三种启发式方法(即基于随机、拟合和最佳拟合的 On-MTP 算法),并引入了 RL 框架来实现 On-MTP 算法的自动训练。比较结果表明,在经过足够的训练迭代后,基于 RL 的 On-MTP 算法在租户请求阻止概率和密钥资源利用率方面明显优于所提出的启发式方法。
• 宽输入电压工作范围:4.2 V 至 36 V • 宽电池电压工作范围:最高 36 V,支持多种化学成分: – 1 至 7 节锂离子电池充电曲线 – 1 至 9 节 LiFePO 4 充电曲线 • 带 NFET 驱动器的同步降压-升压充电控制器 – 可调节开关频率:200 kHz 至 600 kHz – 可选同步至外部时钟 – 集成环路补偿和软启动 – 可选栅极驱动器电源输入,可优化效率 • 自动最大功率点跟踪 (MPPT),适用于太阳能充电 • 支持 USB-PD 扩展功率范围 (EPR) 的双向转换器操作(反向模式) – 可调节输入电压 (VAC) 调节范围:3.3 V 至 36 V,步进为 20 mV – 可调节输入电流调节 (R AC_SNS ):400 mA 至 20 A,步进为 50 mA,使用 5 mΩ 电阻 • 高精度 – ±0.5% 充电电压调节 – ±3% 充电电流调节– ±3% 输入电流调节 • I 2 C 控制,可通过电阻可编程选项实现最佳系统性能 – 硬件可调输入和输出电流限制 • 集成 16 位 ADC,用于电压、电流和温度监控 • 高安全集成 – 可调输入过压和欠压保护 – 电池过压和过流保护 – 充电安全定时器 – 电池短路保护 – 热关断 • 状态输出 – 适配器当前状态 (PG) – 充电器工作状态(STAT1、STAT2) • 封装 – 36 引脚 5 mm × 6 mm QFN
1 越南河内河东区 Yen Nghia 坊 To Huu 街 Phenikaa 大学车辆与能源工程学院 2 韩国庆尚南道金海市 Eobang-Dong 607 号仁济大学机械工程系和高安全车辆核心技术研究中心 621-749 * 电子邮件:mechkhm@inje.ac.kr 收稿日期:2020 年 2 月 17 日/接受日期:2020 年 4 月 2 日/发布日期:2020 年 5 月 10 日 无人机 (UAV) 是一种没有人类飞行员的飞机,因此无人机的主要应用是无人员损失的监视。低空监视飞机是在小型机身中使用光传感器有效载荷的基础。由于监视通常需要秘密进行,因此静默飞行的能力允许使用低空飞机。对于无人机推进系统,光伏电池可用于在白天收集太阳能,其中一部分直接用于为推进装置和机载仪器供电,而剩余部分则存储在储能系统中以供夜间使用。在这种情况下,存储在电池和燃料电池中的电化学能源是两种最佳候选能源,因为它们的重量能量密度最高。总之,本综述旨在提高配备混合电力推进系统的无人机的高空长航时能力。关键词:无人机;光伏电池;燃料电池;混合电力推进系统;高空长航时 1. 引言
In 2019, the US Department of Energy, Fusion Energy Sciences established two Low Temperature Plasma (LTP) Collaborative Research Facilities (CRFs) at the Princeton Plasma Physics Laboratory (PPPL) – Princeton Collaborative Research Facility (PCRF, https://pcrf.pppl.gov) – and at Sandia National Laboratories (SNL) – Sandia Plasma Research Facility (PRF, https://www.sandia.gov/prf/)。这些CRF和传统等离子体科学中心之间的主要区别在于,CRF运行开放,基于广泛的外部用户程序,其中设施专业知识和资源是基于对研究过程的独立绩效审查而分配的。两个CRF至少分配了其资助时间的50%以支持这些用户程序。剩余的预算分配给了设施人员进行的研究,以提高设施的能力和专业知识。PCRF和PRF都为用户提供了对等离子体,等离子体表面相互作用和纳米颗粒的高级诊断和高级计算代码的免费访问,以模拟各种等离子体条件和相互作用。PPPL和SNL在政府赞助计划的多年支持中开发并积累了这些资源,现在能够通过CRF向科学界提供这些能力。如此广泛的资源范围很少在各个大学,工业范围内甚至其他国家实验室中获得。该报告作为试点项目接受了CRF概念。操作四年后,两种设施提交的建议总数添加完善的基础架构,国家实验室的高安全性文化以及运行用户设施的经验 - PCRF和PRF能够为等离子用户的多样化社区服务,包括教职员工,实验室和行业科学家,多家体和学生,后学生,经验丰富的学生,经验丰富的和早期的职业研究员,工程师,物理学家,物理学家,物理学家,物理学家,生物学家,生物学家,医生,化学家,化学者,化学者,化学者,化学者,化学者,化学和医生。在CRF开始时,美国国家科学与工程学院发表了对等离子体科学的十年评估(https://nap.nationalacademies.org/catalog/catalog/25802/25802/plasma-science-en-science-en-science-n------------------------------------------------------- abling-technologial-sustainalocialialition-security-security-slecurity-spletority-sexpleoration-sexpleortility-sexpleoration)。
Arsène Mekinian,1 Lucie Biard,2 Dagna Lorenzo,3 Pavel I Novikov,4 Carlo Salvarani,5 Olivier Espitia,6 Savino Sciascia,7 Martin Michaud,8 Marc Lambert,9 José Hernández-Rodríguez,10 Nicolas Schleinitz,11 Abid Awisat,12 Xavier Puechal,13 Achille Aouba,14 Helene Munoz Pons,15 Ilya Smitienko,16 Jean Baptiste Gaultier,17 Le Mouel Edwige,18 Ygal Benhamou,19 Antoinette Perlat,18 Patrick Jego,18 Tiphaine Goulenok,20 Karim Sacre, 20 伯特兰·利奥热、21 诺兰·哈索尔德、22 乔纳森·布罗纳、23 维尔吉尼·杜弗罗斯特、24 托马斯·塞内、25 朱莉·塞吉耶、11 弗朗索瓦·莫里耶、26 萨宾·贝尔蒂耶、27 亚历山大·贝洛、28 法滕·弗里卡、29 纪尧姆·丹尼斯、30 亚历山大·奥德玛-韦尔杰、31 伊莎贝尔·科内-保特、22 塞巴斯蒂安·亨伯特、32 帕斯卡尔·沃耶-胡内、33 亚历山德罗·托梅莱里、3 埃琳娜·玛丽娜·巴尔迪塞拉、3 桑名昌孝、34 阿尔贝托·洛·古洛、35 瓦汉·穆库奇扬、36 阿泽丁·德拉尔、37 弗朗西斯·加什、8 皮埃尔Zeminsky、24 埃琳娜·加利、3 莫亚·阿尔瓦拉多、5 路易吉·博亚尔迪、5 弗朗西斯科·穆拉托雷、5 马蒂厄·沃蒂尔、2 科拉多·坎波奇亚罗、3 谢尔盖·莫伊谢耶夫、4 马特乌斯·维埃拉、38 帕特里斯·卡库布、38 奥利维尔·费恩、1 大卫·萨阿顿、38 法国高安网络
Arsène Mekinian,1 Lucie Biard,2 Dagna Lorenzo,3 Pavel I Novikov,4 Carlo Salvarani,5 Olivier Espitia,6 Savino Sciascia,7 Martin Michaud,8 Marc Lambert,9 José Hernández-Rodríguez,10 Nicolas Schleinitz,11 Abid Awisat,12 Xavier Puechal,13 Achille Aouba,14 Helene Munoz Pons,15 Ilya Smitienko,16 Jean Baptiste Gaultier,17 Le Mouel Edwige,18 Ygal Benhamou,19 Antoinette Perlat,18 Patrick Jego,18 Tiphaine Goulenok,20 Karim Sacre, 20 伯特兰·利奥热、21 诺兰·哈索尔德、22 乔纳森·布罗纳、23 维尔吉尼·杜弗罗斯特、24 托马斯·塞内、25 朱莉·塞吉耶、11 弗朗索瓦·莫里耶、26 萨宾·贝尔蒂耶、27 亚历山大·贝洛、28 法滕·弗里卡、29 纪尧姆·丹尼斯、30 亚历山大·奥德玛-韦尔杰、31 伊莎贝尔·科内-保特、22 塞巴斯蒂安·亨伯特、32 帕斯卡尔·沃耶-胡内、33 亚历山德罗·托梅莱里、3 埃琳娜·玛丽娜·巴尔迪塞拉、3 桑名昌孝、34 阿尔贝托·洛·古洛、35 瓦汉·穆库奇扬、36 阿泽丁·德拉尔、37 弗朗西斯·加什、8 皮埃尔Zeminsky、24 埃琳娜·加利、3 莫亚·阿尔瓦拉多、5 路易吉·博亚尔迪、5 弗朗西斯科·穆拉托雷、5 马蒂厄·沃蒂尔、2 科拉多·坎波奇亚罗、3 谢尔盖·莫伊谢耶夫、4 马特乌斯·维埃拉、38 帕特里斯·卡库布、38 奥利维尔·费恩、1 大卫·萨阿顿、38 法国高安网络
CAM 727 CT 血管造影,头部/脑部 年度审查,政策重新格式化以提高清晰度和一致性。该技术适应症的多项补充:遗传综合征的筛查频率,高危人群中的动脉瘤筛查 • 二尖瓣主动脉瓣 • 已知的主动脉疾病(动脉瘤、缩窄、夹层) • 疑似脑血管痉挛 • 疑似颈动脉或椎动脉夹层;继发于创伤或由于血管壁薄弱导致的自发性(已在组合中)• 在 3-6 个月内随访已知的颈动脉或椎动脉夹层,以评估再通和/或由于创伤或由于血管壁薄弱导致的自发性(已在组合中)• 在 3-6 个月内随访已知的颈动脉或椎动脉夹层,以评估再通和/或指导抗凝治疗(已在组合中)• 非中枢性霍纳综合征(瞳孔缩小、眼睑下垂和无汗症_ - 也在组合部分• 遗传综合征和罕见疾病部分。• 进行手术评估时出现难治性三叉神经痛或面肌痉挛• 注意:对于之前没有血管影像学检查的远端中风,可根据中风的位置/类型和记录的改变治疗方法的可能性考虑影像学检查• 组合 CT/CTA 部分急性环境中发病后 >6 小时出现雷击性头痛,高度怀疑为 SAH •大血管炎(巨细胞或高安动脉炎),疑似颅内和颅外受累(脑/颈部 CTA 组合)• 了解烟雾病或可逆性脑血管收缩,并伴有任何新的或变化的神经系统体征或症状(脑 CTA/脑 CT 组合 • 当 MRI 禁忌或无法进行时,根据神经系统体征或症状怀疑为继发性中枢神经系统血管炎,且存在异常炎症标志物或自身免疫抗体(脑 CTA/CT 组合)的潜在全身性疾病 • 当 MRI 禁忌或无法进行时,根据神经系统体征和症状怀疑为原发性中枢神经系统血管炎,并已完成感染性/炎症实验室检查(脑 CTA/CT 组合),还要添加目的、禁忌症/首选研究。更新理由/背景和参考文献。 CAM 725 CT 上肢 年度审查,政策意图无变化,政策正在重新格式化以提高清晰度和一致性。添加了目的声明和禁忌症/首选研究声明,也是为了清晰和一致。更新参考文献。CAM 387 应用行为分析服务 年度审查,进行了小幅修订。添加儿科神经科医生作为允许进行测试的专家,并将额外测试要求从 2 项减少到 1 项。CAM 338 专业护理机构 年度审查,政策意图无变化。