Aubry, S. (2019)。食品和农业植物遗传资源数字序列信息的未来。植物科学前沿,10,1046。https://doi.org/10.3389/fpls.2019.01046 Baurens, F.-C.、Martin, G.、Hervouet, C.、Salmon, F.、Yohomé, D.、Ricci, S.、Rouard, M.、Habas, R.、Lemainque, A.、Yahiaoui, N. 和 D'Hont, A. (2019)。重组和大型结构变异塑造了种间食用香蕉基因组。分子生物学与进化,36,97–111。 https://doi.org/10.1093/molbev/msy199 Carpentier, SC、Dens, K.、den Houwe, IV、Swennen, R. 和 Panis, B. (2007)。冻干是一种在蛋白质提取进行 2DE 分析之前储存和运输组织的实用方法吗?蛋白质组学,7,64-69。 https://doi.org/10.1002/pmic.200700529 Cenci, A.、Hueber, Y.、Zorrilla-Fontanesi, Y.、van Wesemael, J.、Kissel, E.、Gislard, M.、Sardos, J.、Swennen, R.、Roux, N.、Carpentier, SC 和 Rouard, M. (2019)。古多倍体和异源多倍体对香蕉基因表达的影响。 BMC Genomics , 20 , 244, https://doi. org/10.1186/s12864-019-5618-0 Cenci, A., Sardos, J., Hueber, Y., Martin, G., Breton, C., Roux, N., Swennen, R., Carpentier, SC, & Rouard, M. (2020). 揭秘 ABB 异源三倍体香蕉中基因组间重组的复杂故事。《植物学年鉴》, 127 , 7–20。 https://doi.org/10.1093/aob/ mcaa032 D'Hont, A.、Denoeud, F.、Aury, J.-M.、Baaurens, F.-C.、Carreel, F.、Garsmeur, O.、Noel, B.、Bocs, S.、Droc, G.、Rouard, M.、Da Silva, C.、Jabbari, K.、Cardi, C.、Poulain, J.、Souquet, M.、Labadie, K.、Jourda, C.、Lengellé, J.、Rodier-Goud, M.、……Wincker, P. (2012)。香蕉(Musa acuminata)基因组和单子叶植物的进化。 Nature , 488 , 213. https://doi.org/10.1038/nature11241 Davey, JW, Davey, JL, Blaxter, ML, & Blaxter, MW (2010). RADSeq:下一代群体遗传学。Briefingings in Functional Genomics , 9 , 416–423. https://doi.org/10.1093/bfgp/elq031 Droc, G.、Lariviere, D.、Guignon, V.、Yahiaoui, N.、This, D.、Garsmeur, O.、Dereeper, A.、Hamelin, C.、Argout, X.、Dufayard, J.-F.、Lengelle, J.、Baaurens, F.-C., Cenci, A.、Pitollat, B.、D'Hont, A.、Ruiz, M.、Rouard, M.,
摘要在这项研究中,研究了用于chiplets的高密度有机杂交底物异质整合。重点放在与互连层的杂种底物的设计,材料,过程,制造和表征上。进行了非线性有限元分析,以显示填充有互连层导电糊的VIA处的应力状态。关键词chiplets,异源整合,杂交底物,互连层,扇出面板级芯片last I.对2.1D IC积分的简介,具有细金属线宽度(L)和间距(S)的薄膜层(无芯底物)在堆积包装基板的顶层上制造,并成为混合基板[1-5]。在这种情况下,杂交底物的屈服损失,尤其是精细的金属L/S无烷基底物很难控制,并且可能非常大。为2.3D IC积分,精细的金属L/S底物(或插头)和堆积包底物是分别制造的[6-15]。之后,细金属L/S底物和堆积封装基板通过焊接接头互连为混合基板,并通过底漆增强。在这种情况下,杂交底物的屈服损失,尤其是精细的金属L/S无烷基底物更易于控制和较小。在这项研究中,精细的金属L/S底物和堆积封装基板或高密度互连(HDI)也被单独制造,然后通过互连层组合。这与2.3d IC集成非常相似,除了焊接接头和底部填充,被取消,这些焊接被互连层取代。互连层约为60μm,由填充有导电糊的预处理和VIA(底部为100μm直径为100μm,直径为80μm),并且处于β级。精细的金属L/S无烷基基材(37μm厚度)是由PID(可令人刺激的介电),LDI(激光直接成像)和PVD(物理蒸气沉积),Photoresist和LDI,LDI,LDI,
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2021年6月4日。; https://doi.org/10.1101/2021.03.11.435053 doi:biorxiv Preprint
芝麻的含种子胶囊在收获时破碎。这种野性的特征使该作物不适合机械化收获,并通过限制无法获得低成本劳动的国家的耕种来限制其商业潜力。因此,为了开发可持续的芝麻农业的机械化品种,囊囊破碎特征的基本遗传基础非常重要。在本研究中,我们产生了芝麻F 2种群,这些种群源自胶囊粉碎品种(Muganli-57)和非惊人突变体(PI 599446)之间的交叉,该杂种用于基于基于双重数量的限制性站点 - 相关的DNA测序的遗传图。所得的高密度遗传图包含782个单核苷酸多态性(SNP),并跨度为697.3厘米,平均标记间隔为0.89 cm。基于参考基因组,将囊破碎特性映射到SNP标记物S8_5062843(78.9厘米)附近LG8(染色体8)附近。为了揭示可能控制破碎特征的基因,检查了标记区域(S8_5062843),并确定了包括六个CDSS的候选基因。注释表明,该基因编码具有440个氨基酸的蛋白质,与转录抑制剂KAN1共享约99%的同源性。与胶囊粉碎等位基因相比,SNP在S8_5062843的空气区域中发生变化和改变的剪接,导致mRNA中的移码突变,从而导致突变父母中该基因的功能丧失,从而导致在不受破坏的囊囊和叶片卷曲中。使用基因组数据,开发了Indel和CAPS标记,以区分标记辅助选择研究中的破碎和非惊人的胶囊基因型。在研究中获得的结果在育种计划中可能是有益的,以提高破碎的性状并提高芝麻的生产力。
神经科学面临的主要挑战是开发可大规模、跨所有相关时间尺度记录神经元活动的工具(1-5)。包括 Neuropixels 探针在内的最新进展利用 CMOS 制造方法显著扩大了记录点的数量和密度(6、7),从而能够以单脉冲分辨率前所未有地记录分布在大脑各处的大量神经元(8-11)。Neuropixels 探针已在小鼠(12-21)、大鼠(22-25)、雪貂(26)和非人类灵长类动物(27)等不同物种中得到迅速采用和广泛应用。尽管如此,仍存在一些关键障碍,阻碍我们稳定地记录数周至数月的长时间尺度上的单个神经元、自由行为的小动物的大量神经元以及密集堆积在具有多种几何形状的大脑结构中的神经元。
自从引入和发展功能性神经成像以来,对人类大脑功能的研究取得了长足的进步。功能性磁共振成像 (fMRI) 和正电子发射断层扫描 (PET) 一直处于这一发展的前沿,但它们也存在局限性。两者都对参与者的行动能力施加了重大限制,这阻碍了它们在婴儿等具有挑战性的人群中的应用以及在研究涉及运动的神经过程和行为方面的应用。由于相关成本、狭窄的扫描仪环境以及(就 PET 而言)放射性示踪剂的使用,延长或重复监测也很困难。1、2 此外,fMRI 对电子或金属植入物(如起搏器、人工耳蜗、动脉瘤夹和手术器械)有禁忌症。由于 MRI 和 PET 设备体积大、固定,并且要求参与者平躺,因此在日常场景中(例如面对面交谈时)研究大脑非常困难。近年来,漫射光学方法在克服这些局限性方面显示出了巨大的潜力。3、4 功能性近红外光谱 (fNIRS) 使用近红外光来检测大脑功能。它使用放置在头皮上的光源和探测器阵列来监测大脑氧合血红蛋白和脱氧血红蛋白浓度的变化,并可以提供空间分辨率为 3 厘米的二维图像。5、6 高密度漫射光学断层扫描 (HD-DOT) 是使用高密度测量阵列的 fNIRS 方法的外推。尽管在这种情况下“高密度”的定义尚未准确确定,但适当的定义是,HD-DOT 阵列提供具有几种不同源 - 探测器分离的通道,跨越“短分离(SS)”(<15 毫米)到“长”(≥30 毫米)范围,并在整个视野范围内在每个分离处提供重叠的空间灵敏度曲线。现已确定 HD-DOT 可以提供比 fNIRS 或其他弥散光学成像方法更优质的深度分辨图像。7 – 9 从多个重叠通道测量中获得的相互信息提高了空间分辨率,使用多个源 - 探测器分离可提高横向和深度特异性。此外,以不同的源 - 探测器分离进行采样提供了一种减少来自脑外组织信号影响的方法。10、11
原理:为此,我们设计了一款微型探头,称为 Neuropixels 2.0,其 5120 个记录点分布在四个柄上。探头和头台被微型化为原始尺寸的三分之一左右(即 Neuropixels 1.0 探头的尺寸),因此两个探头及其单个头台仅重 ~1.1 克,且不会损失通道数(每个探头 384 个通道)。使用两个四柄探头可在一次植入中提供 10,240 个记录点。为了在脑部运动时也能实现稳定的记录,我们优化了记录点的排列。该探头具有更密集的线性化几何形状,可使用新设计的算法进行事后计算运动校正。该算法在 Kilosort 2.5 软件包中实现,可从脉冲数据确定随时间的运动,并使用空间重采样对其进行校正,就像在图像配准中一样。
肝脏X核受体(LXR)激动剂是有希望的抗动脉粥样硬化剂,可增加胆固醇转运蛋白在巨噬细胞触及型巨噬细胞上的表达,从而导致胆固醇增加到内源性高密度脂蛋白(HDL)受体。HDL随后通过反向胆固醇转运的过程将废水胆固醇传递给肝脏,从而减少了动脉粥样硬化斑块。然而,由于脂肪酸和固醇合成增加,LXR激动剂降解触发不良的肝脏脂肪变性和高甘油三酯血症。LXR诱导的肝毒性,药物溶解度差和目标患者种群中的内源性HDL受体的低水平限制了LXR激动剂的临床翻译。在这里,我们提出了一种通过封装在Syn thetic HDL(SHDL)纳米颗粒中的LXR激动剂T0901317(T1317)的双重抗动脉生成策略。SHDL在临床上被证明是胆固醇受体,导致动脉粥样硬化患者的斑块减少。此外,SHDL的疏水核心和内源性动脉粥样硬化靶向能力允许封装水不溶药及其随后递送到动脉粥样硬化。测试了SHDL的几种组成,以优化T1317的封装效率和T1317-SHDL对外排胆固醇的能力。优化的T1317-SHDL表现出来自巨噬细胞的更有效的胆固醇外排,相对于自由药物而言,促动障碍剂的靶向增强。T1317-SHDL药理功效的剂量低于先前对LXR剂的剂量,该剂量可能具有额外的安全益处。最重要的是,在载脂蛋白E缺乏症(APOE - / - )动脉粥样硬化进展鼠模型中,T1317-SHDL与免费药物和空白SHDL相比,T1317-SHDL对动脉粥样硬化的抑制作用较高,高糖性血症副作用降低。此外,本研究中使用的空白SHDL纳米颗粒的既定临床制造,安全性和功效可以促进LXR负载的SHDL的未来临床翻译。
在国家点火设施的实验中,由HDC-ablator非均匀性播种的三维不对称的证据D. T. Casey,1 B. J. Macgowan,1 J. D. Sater,1 A.B. Zylstra,1 O. L. Landen,1 J. Milovich,1 O.A. Hurricane, 1 A. L. Kritcher, 1 M. Hohenberger, 1 K. Baker, 1 S. Le Pape, 1 T. D ö ppner, 1 C. Weber, 1 H. Huang, 2 C. Kong, 2 J. Biener, 1 C. V. Young, 1 S. Haan, 1 R. C. Nora, 1 S. Ross, 1 H. Robey, 1 M. Stadermann, 1 A. Nikroo, 1 D. A. Callahan, 1 R. M. Bionta,1 K. D. Hahn,1 A. S. Moore,1 D. Schlossberg,1 M. Bruhn,1 K. Sequoia,2 M. Rice,2 M. Farrell,2 M. Farrell,2 C. Wild 3 1)Lawrence Livermore国家实验室,美国2)美国2)一般性原子4)停滞时爆炸壳和高面积密度(ߩܴൌ ߩܴൌ)。ρr中的不对称降解壳动能与热点的偶联并减少了该能量的限制。我们提出了第一个证据,即高密度碳实验中的玻璃壳壳厚度(约0.5%)在国家点火设施(NIF)处观察到的3Dρρr不对称的重要原因。这些壳厚度不均匀性显着影响了一些最新的实验,导致ρr不对称的平均ρr和热点速度约为100 km/s的阶段。这项工作揭示了点火实验中重大内爆性降解的起源,并在胶囊厚度计量和对称性上提出了严格的新要求。在国家点火设施(NIF)[1]进行的惯性限制融合(ICF)实验中,氘和trium(dt)燃料的胶囊被浸泡在高密度和温度下,以引发α-颗粒粒子自热和融合燃烧[2,3]。间接驱动ICF概念使用激光来照射高Z圆柱形hohlraum,该圆柱体试图产生几乎均匀的准热,X射线驱动器。X射线驱动器,然后消除胶囊的外层,压缩剩余的烧蚀剂和径向径向向内的低温冷冻DT的内层。此爆炸壳会收敛并压缩气态DT区域形成热点。要达到点火,DT热点必须具有足够高的能量密度,以便足够的时间激发热点自热,并通过密集的DT壳开始燃烧波。该要求可以等效地表示为ܲ߬的条件;其中ܲ是热点压力,能量密度的度量是该能量的限制时间[4,5]。要产生高ܲ߬,内爆必须具有较高的移位内爆速度(ݒݒ),交通壳和热点之间的足够耦合,并且在停滞时高度(或ρr定义为ρr)。壳动能的耦合和该能量的限制都被三维(3D)ρr不对称性降解。使用简化的两活塞系统的最新分析显示[6]在弱α加热的极限中:ఛ
Egert D、Pettibone JR、Lemke S、Patel PR、Caldwell CM、Cai D、Ganguly K、Chestek CA、Berke JD。用于高密度、精确定位神经生理学的细胞级硅探针。J Neurophysiol 124:1578–1587,2020 年。首次发表于 2020 年 9 月 23 日;doi:10。1152/jn.00352.2020。—带有大量电极的神经植入物已成为检查大脑功能的重要工具。然而,与它们记录的神经元相比,这些设备通常会取代很大的颅内容积。这种大尺寸限制了植入物的密度,引发组织反应,从而降低慢性性能,并妨碍了准确可视化完整电路内记录位置的能力。我们在此报告了下一代细胞级硅基神经探针(横截面积为 5 10 毫米),具有超高密度填充(柄间最小 66 毫米),每个探针有 64 或 256 个紧密分布的记录点。我们表明,这些探针可以插入浅层或深层脑结构,并在自由活动的大鼠中连续数周记录大量尖峰。最后,我们展示了一种切片就位方法,用于精确记录相对于附近神经元和解剖特征(包括纹状体 m -阿片受体贴片)的记录点。这种可扩展的技术为检查神经回路内的信息处理以及潜在的人脑机接口提供了一种有价值的工具。