高级高强度钢(AHSS)广泛用于汽车行业[1-7]。它们的高强度和延展性可以保证撞车性并减少汽车的整体体重,从而有助于更大的被动安全性和更少的污染排放[8-11]。在AHSS中,Martensitic Steels(MS-AHSS)用于生产对冲击安全性至关重要的汽车结构组件,例如前后保险杠梁,门抗入口杆,侧面凹凸增强型和屋顶横梁[12-14]。MS-AHSS的成功是其强度和延展性的结果,以及相对较低的成本[12,15]。但是,由于其微观结构,MS-AHSS特别容易受到氢的含量(HE)[16]。H可以在生产过程中被钢吸收,例如涂层,焊接,热处理,绘画[17]或在特定的服务条件下[12]。钢中氢(H)的存在可以降低强度,延展性,疲劳性和断裂韧性[2,12,17 - 21]。文献中已经描述了两个主要的现象:在明显的亚临界裂纹或最终断裂后的最终断裂,没有证据表明先前的裂纹形成和稳定的生长(在[22]中称为HESC和HEFT)。以前的情况是可以用断裂力学方法建模的,是文献中研究最多的情况,而没有亚临界裂纹生长的情况通常与延展性降低有关而没有强度损失[12,19,23 - 27]。MS-AHSS组件通常是制造的已经提出了几种机制来规定H的含义,以及其他机制:(i)HEDE(ii)帮助(iii)HAM [21,22,24,28]。
近年来,为了提高发动机汽车的燃油效率,降低混合动力汽车和电动汽车的电机负荷,减少二氧化碳排放,人们对减轻车身重量的需求日益强烈。因此,高强度钢板的采用量迅速增加。与此同时,对硬质薄型电工钢板的需求也在增加,对提高车载电动机的效率和减小尺寸的需求也在增加。为了满足社会的这种需求,钢铁企业需要一种能够更高效地生产更薄、更硬材料的轧机。为了满足这些需求,Primetals Technologies 公司开发了 HYPER UC-MILL*(6 辊轧机),其工作辊比冷轧领域的领导者 UC-MILL(6 辊轧机)的工作辊小 20-30%。该轧机实现了更高的形状可控性和更低的轧辊负荷,具有比现有 UC-MILL 更大的压下能力,尽管工作辊直径较小,但具有驱动工作辊的显著优势。到目前为止,我们已收到总共七台 HYPER UC-MILL 的订单,其中三台已投入运行,四台目前正在设计和制造中。该轧机对硬而薄的材料(高强度钢和高级电工钢板)的生产做出了重大贡献。本报告介绍了 HYPER UC-MILL 的特点、其使用效果以及其在 2020 年 1 月从首钢迁安电动汽车电工钢有限公司(中国)订购的用于生产高级电工钢板的串联冷轧机中的应用示例。 * HYPER UC-MILL 是 Primetals Technologies Japan, Ltd. 的注册商标。
这是一篇关于先进高强度钢 (AHSS) 微观结构-性能关系理解的最新进展的观点论文。这些合金构成一类高强度可成型钢,主要设计为运输部门的板材产品。AHSS 通常具有非常复杂和多层次的微观结构,由铁素体、奥氏体、贝氏体或马氏体基体或这些成分的双相或甚至多相混合物组成,有时还富含沉淀物。这种复杂性使建立可靠的、基于机制的微观结构-性能关系具有挑战性。目前已有许多关于不同类型 AHSS 的优秀研究(例如双相钢、复相钢、相变诱导塑性钢、孪生诱导塑性钢、贝氏体钢、淬火和分配钢、压硬钢等),并且出现了几篇概述,其中讨论了它们的与机械性能和成型相关的工程特征。本文回顾了该领域微观结构和合金设计的最新进展,特别关注了利用复杂位错亚结构、纳米级沉淀模式、变形驱动转变和孪生效应的含锰钢的变形和应变硬化机制。本文还回顾了微合金纳米沉淀硬化钢和压硬化钢的最新发展。除了对其微观结构和性能进行批判性讨论外,还评估了它们的抗氢脆和损伤形成等重要特性。我们还介绍了应用于 AHSS 的先进表征和建模技术的最新进展。最后,讨论了机器学习、全过程模拟和 AHSS 的增材制造等新兴主题。这一观点的目的是找出这些不同类型的先进钢材在变形和损伤机制上的相似之处,并利用这些观察结果促进它们的进一步发展和成熟。
Hoeganaes 公司新泽西州辛纳明森 08077 摘要 汽车行业的设计师利用双相 (DP) 钢在碰撞过程中吸收大量能量的能力,从而提高驾驶员和乘客的安全性。车辆底盘上可从使用它们中受益的位置通常由撞击期间需要吸收的能量决定。考虑到这些能量吸收性能要求,设计了一种名为自由烧结低合金 (FSLA) 的 DP 钢,用于金属粘合剂喷射打印 (BJT),并应用于 BJT 和激光粉末床熔合 (PBF-LB),以将增材制造 (AM) 的使用扩展到这些应用中。之前的论文 [1-5] 证明了这种 DP 合金的多功能性,其中设计了多种热处理来提供所需的微观结构控制,以满足锻造 DP 低合金钢的广泛机械性能。结果表明,转变产物的比例可以从几乎全是铁素体变为由高百分比的贝氏体和/或马氏体以及少量铁素体组成。本文研究了原始 FSLA 的变体 FSLA 改进型 (FSLA Mod) 的冲击能量与经过几种热处理形成的微观结构的关系。研究重点关注微观结构的变化和由此产生的断裂表面与各自冲击能量的关系。此信息可用于设计适当的热处理,以产生正确的微观结构,满足多种应用对机械性能的需求。简介 DP 钢是一种用途广泛的先进高强度钢 (AHSS),通过热处理定制其微观结构,能够拥有各种机械性能。双相微观结构是通过在相图的两相 + (铁素体 + 奥氏体)区域对这些低碳钢进行临界退火并以预定速率冷却而产生的。
SkillsUSA 认证:109 – I–CAR ProLevel 1 估算师在完成每个 I– CAR®ProLevel™ 时,有望学习和完善以下领域:为可驾驶车辆的前部、侧面和后部撞击损坏撰写完整准确的损坏分析报告,在混合动力车辆周围安全工作,分析约束系统的损坏,协调零件订购和调度,了解汽车修补流程,诊断简单的电气损坏,分析先进材料的损坏并识别冰雹、盗窃和故意破坏。[I–CAR] 110 – I–CAR ProLevel 2 分析非可驾驶车辆的前部、侧面和后部撞击损坏,分析先进安全系统和先进电气/机械系统的损坏,固定玻璃损坏分析和更换注意事项,识别洪水和火灾损坏,并强烈鼓励维持 ASE 估算师 (B6) 认证。 [I–CAR] 111 – I–CAR ProLevel 3 执行拆卸以进行完整的损坏分析,分析高级转向和悬架系统的损坏情况,强烈建议获得 ASE 认证,超越估算员 (B6) 认证并接受与角色相关的年度培训。 [I–CAR] 112 – I–CAR 先进高强度钢 (AHSole) 汽车制造商正在使用更坚固、更轻的钢材来提高乘客安全性和车辆燃油里程。由于强度更高,这些钢材带来了独特的维修挑战。本课程概述了后期车型制造中使用的不同类型的钢材,解决了可修复性问题,并就正确的维修技术提供了一些汽车制造商的建议:了解汽车制造商对
柏林,14.02.2025。eit Rawmaterials已宣布,在芬兰Pori的Novana的Vanadium Recovery Project(VRP1)的赠款中进行了第二笔投资,该投资于2024年9月的最初50万欧元投资,并将其少数股权提高到2.2%。投资旨在加快Novana的进步,成为欧洲的第一个国内生产商五氧化钒(V 2 O 5),这是一种用于高强度钢和钒流量电池(VFB)的关键原料。这项投资重点介绍了EIT Rawmaterials在欧洲的原材料创新和工业化中的影响。EIT Rawmaterials董事总经理首席执行官BerndSchäfer表示:“第二轮投资反映了我们对Novana的团队和技术的信心。 这家公司是我们投资组合的杰出例子,我们在原材料价值链中培养创新技术和项目,战略重点是确保欧洲的原材料供应链和工业竞争力。 我们很自豪地支持Novana成为第一位欧洲国内高级钒的国内生产商,这是欧洲领先行业的重要资源。” Novana首席执行官Johanna Lamminen补充说:“ EIT Rawmaterials的这项重新投资是我们项目的重大推动力。 它将加速我们在建设中的进步,并最终在欧洲生产零碳,高纯钒。 我们深深地珍视他们的伙伴关系,并共同对关键原材料的循环经济共同承诺。” 注释编辑器:BerndSchäfer表示:“第二轮投资反映了我们对Novana的团队和技术的信心。这家公司是我们投资组合的杰出例子,我们在原材料价值链中培养创新技术和项目,战略重点是确保欧洲的原材料供应链和工业竞争力。我们很自豪地支持Novana成为第一位欧洲国内高级钒的国内生产商,这是欧洲领先行业的重要资源。” Novana首席执行官Johanna Lamminen补充说:“ EIT Rawmaterials的这项重新投资是我们项目的重大推动力。它将加速我们在建设中的进步,并最终在欧洲生产零碳,高纯钒。我们深深地珍视他们的伙伴关系,并共同对关键原材料的循环经济共同承诺。”注释编辑器:novana是ASX上市的Neometals的子公司,它开创了开创性的圆形技术,可从Steel Slag(Steelmaking Makemaking Making Making Maken Make of Steel Slag)生产高纯度的五氧化含氧剂(V 2 O5),而在此过程中消耗了CO 2。VRP1预计每年生产9,000吨五氧化钒,等于当前欧洲年度需求的40%以上。这项新投资将使EIT Rawmaterials在Novana中的股份提高到2.2%,并在以后的阶段基于项目里程碑,可以选择多达1000万欧元的额外权益。
001 1-4 全体演讲 1 Sung-Joon Kim 奥氏体不锈钢中间隙原子的作用:C 与 N 002 5-7 1 相变 Tadashi Furuhara 界面工程在控制钢的微观结构和性能中的应用 003 8-11 1 相变 Yasunobu Nagataki 汽车用超高强度钢板的最新研究进展 006 12-15 1 相变 Mahesh Chandra Somani 北极应用新型超高强度钢的设计和加工的最新进展 007 16-18 1 晶粒结构控制 Munekazu Ohno 包晶钢凝固过程中粗柱状奥氏体晶粒的形成 008 19-20 1 晶粒结构控制 Shuang Xia 晶界特征分布对 316L 不锈钢力学性能的影响 009 21-22 1 晶粒结构控制Toshio Ogawa 通过三维微观结构分析表征纯铁和低碳钢的再结晶行为 010 23-25 1 晶粒结构控制 YongJie Yang 取向硅钢中一次再结晶织构的发展 011 26-29 1 第二相粒子控制 Yutaka Neishi 通过控制夹杂物形态提高特殊钢棒材和线材的性能 012 30-33 1 第二相粒子控制 Ling Zhang 含 2 wt%Nb 低碳钢的力学性能 013 34-37 1 第二相粒子控制 Wei Wang 通过测量高温下晶粒生长获得 TiN 在奥氏体中的溶度积 015 38-40 2 强度和变形 1 Nobuhiro Tsuji 完全再结晶超细晶粒钢同时实现高强度和高延展性的可能性 016 41-43 2 强度与变形 1 Elena Pereloma 揭示加工参数之间的关系,铁素体高强度低合金钢的相间析出与强化 017 44-47 2 强度与变形 1 Genichi Shigesato 高韧性钢板的微观组织控制 018 48-50 2 强度与变形 1 Norimitsu Koga 时效超低碳钢的低温拉伸性能 019 51-54 2 强度与变形 1 Myeong-heom Park 不同马氏体硬度的铁素体+马氏体双相钢的局部变形行为 020 55-57 2 强度与变形 2 Noriyuki Tsuchida 从应力分配角度改善力学性能 021 58 2 强度与变形 2 Stefanus Harjo 利用脉冲中子衍射观察钢材的变形行为 022 59 2 强度与变形 2 Si Gao 晶粒尺寸对钢材拉伸性能的影响304 不锈钢的原位中子衍射研究 023 60 2 先进钢种 1 Jungho Han 提高中锰钢低温韧性的可能性搅拌摩擦焊 024 61 2 先进钢种 1 Hongliang Yi 涂层/基体界面碳富集及其对 Al-Si 涂层压淬钢弯曲性能的影响 027 62-65 2 先进钢种 1 Dirk Ponge 高强度中高锰钢中的氢脆:从基础认识到新的抗氢微观结构设计 028 66-69 3 氢脆 Young-Kook Lee 微观结构和变形对珠光体钢氢脆的影响 029 70 3 氢脆 Hong Luo 环境引起的铁基多元合金的退化 030 71-73 3 氢脆 Shusaku Takagi 氢脆评估问题 031 74-76 3 氢脆 Akinobu Shibata 马氏体钢中的氢相关裂纹扩展行为 032 77-78 3 氢脆 Tomohiko Hojo 超高强度 TRIP 辅助钢的氢脆性能评估 033 79 3 耐热钢的设计 Satoru Kobayashi 提高长期结构稳定性的铁素体耐热钢的设计 034 80 3 设计耐热钢的设计 Shigeto Yamasaki Co 添加对高铬铁素体钢蠕变强度和磁性能的影响 035 81-84 3 耐热钢的设计 Nobuaki Sekido 利用纳米 SIMS 观察耐热铁素体钢在回火过程中硼偏析的变化 036 85-88 3 耐热钢的设计 Yoshiaki Toda 提高沉淀强化铁素体钢的蠕变强度 037 89-92 3 耐热钢的评价 Masatsugu Yaguchi 长期使用条件下 91 级钢的微观结构和蠕变强度 038 93 3 耐热钢的评价 Masatoshi Mitsuhara 晶界特征对 9Cr 铁素体耐热钢中 M23C6 碳化物生长的影响 039 94-97 3 18Cr 9Ni 3Cu Nb N钢的蠕变变形行为 040 98-101 3 耐热钢的评价 张胜德 长期使用超级304H钢锅炉管的组织与力学性能
[2] S. M. Thompson,L。Bian,N。Shamsaei和A. Yadollahi,“添加剂制造的直接激光沉积概述;第一部分:运输现象,建模和诊断,” Addive Manufacturing,第1卷。8,pp。36-62,2015年10月。[3] V. T. Le,H。Paris和G. Mandil,“使用增材和减法制造技术的直接零件再利用策略的制定”,《增材制造》,第1卷。22,pp。687-699,2018年8月。[4] V. T. Le,H。Paris和G. Mandil,“在再制造环境中合并添加剂和减法制造技术的过程计划”,《制造系统杂志》,第1卷。44,否。1,pp。243-254,2017年7月。[5] A. Ramalho,T。G. Santos,B。Bevans,Z。Smoqi,P。Rao和J. P. Oliveira,“污染对316L不锈钢线和ARC添加性生产过程中声学发射的影响”,Addived Manufacturing,第1卷。51,第1条。102585,2022年3月。[6] S. Li,J。Y. Li,Z。W. Jiang,Y。Cheng,Y。Z. Li,S。Tang等人,“控制Inconel 625的定向能量沉积期间的柱状到等式的过渡”,Addy Manufacturing,第1卷。57,第1条。102958,2022年9月。[7] T. A. Rodrigues,N。Bairrão,F。W。C. Farias,A。Shamsolhodaei,J。Shen,J。Shen,N。Zhou等人,“由Twin-Wire和Arc添加剂制造(T-WAAM)生产的钢 - Copper功能渐变的材料(T-WAAM)”,材料&Designs,第1卷。213,第1条。110270,2022年1月。66,否。8,pp。1565-1580,2022年8月。32,否。[8] V. T. Le,D。S. Mai,M。C. Bui,K。Wasmer,V。A. Nguyen,D。M. Dinh等,“过程参数和热周期的影响,对308L不锈钢墙的质量,该材料由添加剂生产产生的308L不锈钢墙,使用弧形焊接来源,使用弧形焊接源,焊接,焊接,焊接,”。[9] D. Jafari,T。H。J. Vaneker和I. Gibson,“电线和电弧添加剂制造:控制制造零件的质量和准确性的机遇和挑战”,《材料与设计》,第1卷。202,第1条。109471,2021年4月。[10] S. W. Williams,F。Martina,A。C. Addison,J。Ding,G。Pardal和P. Colegrove,“ Wire + Arc添加剂制造”,《材料科学与技术》,第1卷。7,pp。641-647,2016。[11] W. E. Frazier,“金属添加剂制造:评论”,《材料工程与性能杂志》,第1卷。23,否。6,pp。1917-1928,2014年6月。[12] J. Xiong,Y。Li,R。Li和Z. Yin,“过程参数对基于GMAW的添加剂制造中多层单频薄壁零件的表面粗糙度的影响”,《材料加工技术杂志》,第1卷。252,pp。128-136,2018年2月。[13] V. T. Le,“基于气体弧焊接的金属零件添加剂制造的初步研究”,VNUHCM科学技术杂志,第1卷。23,否。1,pp。422-429,2020年2月。58,否。4,pp。461-472,2020年7月。[15] W. Jin,C。Zhang,S。Jin,Y。Tian,D。Wellmann和W. Liu,“不锈钢的电弧添加剂制造:审查”,《应用科学》,第1卷。[14] V. T. Le,Q。H。Hoang,V。C. Tran,D。S. Mai,D。M. Dinh和T. K. Doan,“焊接电流对由薄壁低碳构建的形状和微观结构形成的影响,由电线添加剂制造建造的薄壁低碳零件”,《越南科学和技术杂志》,第1卷。10,否。5,第1条。1563,2020年3月。[16] T. A. Rodrigues,V。Duarte,J。A. Avila,T。G。Santos,R。M。Miranda和J. P. Oliveira,“ HSLA钢的电线和弧添加剂制造:热循环对微结构和机械性能的影响”,《增材制造》,第1卷。27,pp。440-450,2019年5月。[17] J. G. Lopes,C。M。Machado,V。R。Duarte,T。A。Rodrigues,T。G。Santos和J. P. Oliveira,“铣削参数对电线和弧添加剂生产产生的HSLA钢零件的影响(WAAM)”,《制造工艺杂志》,第1卷。59,pp。739-749,2020年11月。[18] A. V. Nemani,M。Ghaffari和A. Nasiri,“通过传统滚动与电线弧添加剂制造制造的船建造钢板的微观结构特性和机械性能的比较,”添加剂制造业,第1卷。32,第1条。101086,2020年3月。[19] P. Dirisu,S。Ganguly,A。Mehmanparast,F。Martina和S. Williams,“对线 +电线 + ARC添加剂生产的高强度高强度低合金结构钢组件的裂缝韧性分析”,材料科学与工程:A,第1卷,第1卷。765,第1条。138285,2019年9月。787,第1条。139514,2020年6月。[20] L. Sun,F。Jiang,R。Huang,D。Yuan,C。Guo和J. Wang,“各向异性机械性能和低碳高强度钢分量由Wired and Arc添加剂制造制造的低强度钢组件的变形行为”,材料科学和工程学:A,A,第1卷。[21] https://doi.org/10.1007/s11665-022-06784-7