(2022年3月23日收到; 2022年6月25日修订; 2022年8月6日接受)摘要 - 对于车辆状态估算,传统的卡尔曼过滤器在高斯假设下表现良好,但在实际的非高斯局势(尤其是当噪声是非高斯的重型尾巴)中,它表现出较差的准确性和鲁棒性。在本文中,提出了基于最大相关标准(MCC)的扩展卡尔曼过滤器(EKF)算法(MCCEKF),并建立了横向纵向耦合的车辆模型,同时使用YAW速率,longipudinal peppare的状态观察者,使用了longitialinal peppare,该速度使用了易于使用的速度。在分析了所提出算法的复杂性后,通过双车道变化和正弦扫描转向扭矩输入操作在Simulink/CARSIM仿真实验平台上验证了新算法。实验结果表明,与传统的EKF算法相比,基于MCC的EKF算法在非高斯噪声的情况下具有更强的鲁棒性和更好的估计精度,而MCCEKF在实际情况下更适合于车辆状态估计。关键词:车辆状态估计,最大Correntropy标准,非高斯噪声,车辆动力学1。简介
摘要发达国家最重要的优先事项之一是使用机器决策而不是人类。需要该领域的领域之一就是健康。为此,确定人们的肥胖和瘦弱在研究和研究社会的健康状况和采用卫生系统政策方面非常有用。人物作为研究数据库的图像是从几个不同的环境中编写的,在这些环境中,相机与人之间的距离在所有人之间都是相同的。然后,使用背景扣除去除图像的背景。包括图像形态特征的图像特征是从图像中提取的,并分为两类以执行分类操作。人们分为三类:脂肪,中和薄。使用高斯低通滤波器方法将图像液体使用,并使用两种盐和胡椒噪声和高斯噪声进行过滤的不同频率。n正常图像,最高精度与精度为97.1%的SVM方法有关,最低的方法分别与MLP,贝叶斯和KNN算法有关。本文的结果表明,除了能够从肥胖和瘦弱方面对社会人民进行分类之外,还比到目前为止提出的大多数方法都具有更高的准确性。根据这项研究的解决方案和结果,通过增加人们的形象,除了提高准确性外,它将达到更实际的水平。关键字关键字:分类,图像处理,机器学习,SVM,薄,脂肪
我们提出了量子信念传播 (QBP),一种基于量子退火 (QA) 的低密度奇偶校验 (LDPC) 错误控制码解码器设计,该解码器在 Wi-Fi、卫星通信、移动蜂窝系统和数据存储系统中得到了广泛应用。QBP 将 LDPC 解码简化为离散优化问题,然后将简化的设计嵌入到量子退火硬件中。QBP 的嵌入设计可以在具有 2,048 个量子比特的真实最先进的 QA 硬件上支持块长度高达 420 位的 LDPC 码。我们在真实的量子退火器硬件上评估性能,对各种参数设置进行敏感性分析。我们的设计在高斯噪声无线信道上在 SNR 9 dB 下实现了 20 µ s 内的 10 − 8 比特错误率和 50 µ s 内的 1,500 字节帧错误率 10 − 6。进一步的实验测量了在真实无线信道上的性能,需要 30 µ s 才能在 SNR 15-20 dB 下实现 1,500 字节 99.99% 的帧传输率。QBP 的性能优于基于 FPGA 的软信念传播 LDPC 解码器,在 SNR 低 2.5–3.5 dB 时达到 10 − 8 的误码率和 10 − 6 的帧错误率。就局限性而言,QBP 目前无法在当前的 QA 处理器上实现实用的协议大小(例如 Wi-Fi、WiMax)LDPC 码。我们在本工作中的进一步研究提出了未来成本、吞吐量和 QA 硬件趋势方面的考虑。
摘要:由可再生能源,电池存储和负载组成的网格连接的微电网需要一个控制电池运行的适当能源管理系统。传统上,使用载荷需求的预测数据和可再生能源(RES)的24小时预测数据使用电池优化技术进行了优化,其中在一天开始之前确定了电池操作(充电/放电/空闲)。强化学习(RL)最近被建议作为这些传统技术的替代方法,因为它可以使用真实数据在线学习最佳策略。文献中已经提出了RL的两种方法。of lim and Online。在频道中,代理商使用预测的生成和加载数据来学习最佳策略。一旦达到收敛,电池命令就会实时派遣。此方法类似于传统方法,因为它依赖于预测数据。在在线RL中,代理商通过使用实际数据实时与系统进行交互来了解最佳策略。本文研究了两种方法的有效性。具有不同标准偏差的白色高斯噪声被添加到真实数据中,以创建合成的预测数据以验证该方法。在第一种方法中,预测数据由a fine rl算法使用。在第二种方法中,在线RL算法实时与实际流数据进行了交互,并且使用真实数据对代理进行了培训。当比较两种方法的能源成本时,发现在线RL提供的结果要比实际数据和预测数据之间的差异更好。
深神经网络(DNNS)在许多AI地球观察应用中(AI4EO)中作为关键解决方案的突出性(AI4EO)上升。然而,它们对对抗例子的敏感性构成了一个关键的挑战,损害了AI4EO算法的可靠性。本文在遥感图像(UAD-RS)中提出了一种新型的通用对抗防御方法,利用预训练的扩散模型来保护DNN免受表现出异质对抗模式的各种对抗性示例。具体而言,使用预训练的扩散模型开发了通用的对抗纯化框架,通过引入高斯噪声以及随后从对抗性示例中对扰动的纯化来减轻对抗的扰动。此外,还引入了自适应噪声水平选择(ANL)机制,以确定具有任务指导的Fréchet成立距离(FID)排名策略的纯化框架的最佳噪声水平,从而提高了纯化性能。因此,仅需要一个预训练的扩散模型来净化每个数据集的各种对抗性示例,这些示例具有异质性的对抗模式,从而大大降低了多个攻击设置的训练工作,同时在没有对抗扰动的情况下保持高性能。对四个异质RS数据集进行的实验结果,重点是场景分类和语义分割,表明UAD-RS的表现优于最先进的对抗性纯化方法,从而为七个常见的遇到的对抗性扰动提供了普遍的防御。com/ericyu97/uad-rs)。代码和预训练的模型可在线获得(https://github。
摘要。我们提出了用于数据驱动的动力学系统的授予扩散模型。在这种类型的深度学习中,对神经网络进行了训练,以替代和扭转扩散过程,在该过程中,高斯噪声被从动力学系统的吸引子中添加到状态。迭代应用,神经网络可以将各向同性高斯噪声的样品映射到状态分布。我们展示了这种神经网络在Lorenz 1963系统的概念验证实验中的潜力。经过培训的状态发电,神经网络可以生产几乎与吸引子上的样本。该模型已经学会了系统的内部表示,适用于国家生成以外的不同任务。作为第一个任务,我们通过重新培训其最后一层并将其余网络保留为固定特征提取器,从而为预训练的神经网络提供了替代建模。在这些低维设置中,这种精细的模型的性能与从头开始训练的深度神经网络相似。作为第二个任务,我们应用预训练的模型来从确定性运行中生成合奏。扩散运行,然后迭代应用神经网络,条件状态生成,这使我们能够从运行的邻居区域中的吸引子中采样。为了控制所得的集合扩散和高斯性,我们调整扩散时间,从而调整吸引子的采样部分。虽然更容易调整,但此提出的集合采样器可以在集合最佳插值中胜过调谐的静态协方差。因此,这两个应用显示,降级扩散模型是代表动态系统学习的有前途的方法。
摘要 目的. 脑电图 (EEG) 情绪识别中的数据稀缺问题导致难以使用机器学习算法或深度神经网络构建高精度的情感模型。受新兴深度生成模型的启发,我们提出了三种增强 EEG 训练数据的方法,以提高情绪识别模型的性能。方法. 我们提出的方法基于两个深度生成模型,变分自编码器 (VAE) 和生成对抗网络 (GAN),以及两种数据增强方式,即全部使用和部分使用策略。对于全部使用策略,所有生成的数据都会被增强到训练数据集中,而不会判断生成数据的质量;而对于部分使用策略,仅选择高质量数据并附加到训练数据集。这三种方法称为条件 Wasserstein GAN (cWGAN)、选择性 VAE (sVAE) 和选择性 WGAN (sWGAN)。主要结果. 为了评估这些提出方法的有效性,我们对两个用于情绪识别的公共 EEG 数据集(即 SEED 和 DEAP)进行了系统的实验研究。我们首先以两种形式生成逼真的脑电图训练数据:功率谱密度和差分熵。然后,我们用不同数量的生成逼真的脑电图数据扩充原始训练数据集。最后,我们训练支持向量机和具有快捷层的深度神经网络,使用原始和扩充的训练数据集构建情感模型。实验结果表明,我们提出的基于生成模型的数据增强方法优于现有的数据增强方法,如条件 VAE、高斯噪声和旋转数据增强。我们还观察到,生成的数据数量应小于原始训练数据集的 10 倍才能达到最佳性能。意义。我们提出的 sWGAN 方法生成的增强训练数据集显著提高了基于脑电图的情绪识别模型的性能。
在科学和工程中的许多任务中,目标是从从已知的前向模型中收集的少量嘈杂测量值中推断出未知的图像,描述了某些传感或成像模式。由于资源限制,此图像重建任务通常是极度不良的,因此需要采用表达性的先验信息以正行解决方案空间。基于得分的扩散模型,由于其令人印象深刻的经验成功,已成为图像重建中表现出的先验的吸引人的候选人。为了立即适应各种任务,开发有效,一致和健壮的算法非常有趣,这些算法将图像先验分布的无条件得分函数与远期模型的灵活选择结合在一起。这项工作开发了一种算法框架,用于在与一般正向模型的非线性反问题中使用基于得分的扩散模型作为当前数据。是由成像社区中的插件和播放框架激励的,我们引入了一种扩散的插件方法(DPNP),该方法替代称为两个采样器,这是一个仅基于远期模型的可能性函数,并且是基于远期的扩散采样者的近端一致性采样器,并基于远期模型的函数。关键见解是,在白色高斯噪声下进行降解可以通过随机(即DDPM型)和确定性(即DDIM型)采样器使用相同的分数函数进行训练。代码可在https://github.com/x1xu/diffusion-plug-and-play上找到。我们同时建立了DPNP的渐近性和非质子性能保证,并提供了数值实验,以说明其在解决线性和非线性图像重建任务方面的希望。据我们所知,DPNP是使用无条件扩散先验的非线性反问题的第一种可证明的后验抽样方法。据我们所知,DPNP是使用无条件扩散先验的非线性反问题的第一种可证明的后验抽样方法。
符号列表 α 岩体中薄弱面的方向。 β g , β l 分别为粒子群优化算法的全局和局部学习参数。 γ 土壤单位重量。 γ SVM 支持向量机核系数。 ϵ 高斯噪声。 ζ(x) 输入值 x 的高斯隶属函数。 θ 隧道掘进机俯仰角。 κ 土壤卸载-重新加载曲线的斜率。 μ(x) 高斯过程的平均向量。 ν l 隧道衬砌的泊松比。 ν s 土壤的泊松比。 ρ 1 , ρ 2 两个随机初始化的向量,其条目范围在 0 和 1 之间。 σ 高斯函数的标准偏差。 ϕ′ 土壤摩擦角。 ψ′ 土壤扩张角。 A 隧道掘进机的表面积。 a 使用模糊 c 均值聚类算法控制系统模糊性的参数。AR 隧道掘进机推进速度。b 可调偏差矢量。BI 岩体脆性指数。C 管串收敛。c 高斯函数均值。c′ 土壤黏聚力。CP 刀盘功率。CM 施工方法。D 隧道掘进机直径。dj 数据聚类中心 j。D c 隧道掘进机刀盘直径。DPW 弱面间深度。E l 隧道衬砌杨氏模量。E s 土壤杨氏模量。EI 抗弯刚度。EPB 土压平衡。f ( x ) 表示数据底层结构的潜在函数。FPI 场穿透指数。g* 粒子群优化算法的全局最佳历史位置。GSI 地质强度指数。H 隧道覆盖深度。H w 隧道掘进机上方地下水位高度。 it, il 土面沉降曲线横、纵向拐点。J FCM 模糊c均值聚类目标函数。JF 隧道掘进机顶进力。K 侧向土压力系数。ks 土的渗透性。k sub 路基反力模量。k ( x , x ′) 输入对x和x′的协方差函数。
近年来,雷达传感器和机器学习的结合改变了生命体征监测,尤其是在医疗保健和汽车行业。本研究使用车辆中的MMWave雷达技术来监视生命体征,这解决了诸如驾驶员疲倦之类的问题。与机器学习集成时,该技术在诸如患者护理设施和车辆舱的设置中提供了非侵入性,保护隐私的生理监测解决方案,同时仍在苛刻的环境中有效地执行。机器学习通过处理大量传感器数据来提高基于雷达的监视的准确性,但是在诸如车辆之类的嘈杂情况下保持精确度很难。本研究通过正确监视驾驶员和乘客来解决这些问题(Ahmed&Cho,2024)。本演示文稿讨论了硬件限制,实施的解决方案以及与生命体征获取有关的当前软件问题。诸如高斯噪声添加和生成对抗网络(GAN)之类的技术可以提高收集的数据集的准确性和可靠性。自动编码器比Kalman过滤器(例如Kalman过滤器)优选,因为它们可以有效地解决非线性问题并消除噪音和背景。机器学习方法,例如卷积神经网络(CNN)和自校准的长期短期记忆(LSTM),在各种环境条件下对特征提取更有效(Zheng等,2021)。关键字生命体征监视 - MM波雷达 - 机器学习参考Ahmed,S。,&Cho,S。H.(2024)。传统的自回旋模型对噪声敏感,因此,建议使用诸如时间卷积网络(TCN)之类的机器学习方法来进行信号处理,实时生命体征记录以及无连接传感器而重建心率变异性。研究团队利用了雷达和图形处理机(例如雷森·纳米(Jetson Nano))等尖端硬件解决方案(例如雷森·纳米(Jetson Nano))来应对实时机器学习的挑战(Zhang等,2022)。医疗保健雷达的机器学习:人类生命体征测量和活动识别的最新进展。IEEE通信调查与教程,26(1),461-495。 https://doi.org/10.1109/comst.2023.3334269IEEE通信调查与教程,26(1),461-495。 https://doi.org/10.1109/comst.2023.3334269