Loading...
机构名称:
¥ 1.0

近年来,雷达传感器和机器学习的结合改变了生命体征监测,尤其是在医疗保健和汽车行业。本研究使用车辆中的MMWave雷达技术来监视生命体征,这解决了诸如驾驶员疲倦之类的问题。与机器学习集成时,该技术在诸如患者护理设施和车辆舱的设置中提供了非侵入性,保护隐私的生理监测解决方案,同时仍在苛刻的环境中有效地执行。机器学习通过处理大量传感器数据来提高基于雷达的监视的准确性,但是在诸如车辆之类的嘈杂情况下保持精确度很难。本研究通过正确监视驾驶员和乘客来解决这些问题(Ahmed&Cho,2024)。本演示文稿讨论了硬件限制,实施的解决方案以及与生命体征获取有关的当前软件问题。诸如高斯噪声添加和生成对抗网络(GAN)之类的技术可以提高收集的数据集的准确性和可靠性。自动编码器比Kalman过滤器(例如Kalman过滤器)优选,因为它们可以有效地解决非线性问题并消除噪音和背景。机器学习方法,例如卷积神经网络(CNN)和自校准的长期短期记忆(LSTM),在各种环境条件下对特征提取更有效(Zheng等,2021)。关键字生命体征监视 - MM波雷达 - 机器学习参考Ahmed,S。,&Cho,S。H.(2024)。传统的自回旋模型对噪声敏感,因此,建议使用诸如时间卷积网络(TCN)之类的机器学习方法来进行信号处理,实时生命体征记录以及无连接传感器而重建心率变异性。研究团队利用了雷达和图形处理机(例如雷森·纳米(Jetson Nano))等尖端硬件解决方案(例如雷森·纳米(Jetson Nano))来应对实时机器学习的挑战(Zhang等,2022)。医疗保健雷达的机器学习:人类生命体征测量和活动识别的最新进展。IEEE通信调查与教程,26(1),461-495。 https://doi.org/10.1109/comst.2023.3334269IEEE通信调查与教程,26(1),461-495。 https://doi.org/10.1109/comst.2023.3334269

使用MM-Wave Radar在车辆中监视生命体征...

使用MM-Wave Radar在车辆中监视生命体征...PDF文件第1页

相关文件推荐

2024 年
¥1.0
2024 年
¥8.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥2.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥5.0
2024 年
¥1.0