摘要。预先训练的扩散模型和3D一代的最新进展促使人们对创建4D含量促进了兴趣。然而,实现高保真4D代的时空一致性仍然是一个挑战。在这项工作中,我们提出了STAG4D,这是一个新颖的框架,将预训练的扩散模型与动态3D高斯式相结合,用于高保真4D代。从3D生成技术中汲取灵感,我们利用多视图扩散模型来初始化锚定在输入视频帧上的多视图图像,在该框架上可以通过视频扩散模型捕获或生成视频。为了确保多视图序列初始化的时间一致性,我们引入了一种简单而有效的融合策略,以利用第一个框架作为自我注意计算中的时间锚。使用几乎一致的多视图序列,我们应用得分蒸馏采样以优化4D高斯点云。4D高斯吐痰是专门为生成任务而设计的,其中提出了一种自适应致密化策略,以减轻不稳定的高斯疗程以进行强大的优化。值得注意的是,所提出的管道不需要对扩散网络进行任何预训练或微调,而为4D代任务提供了更容易且更实用的解决方案。的实验实验表明,我们的方法优于先前的4D代作品在呈现质量,时空的一致性和生成鲁棒性方面起作用,从而为4d代创造了新的最先进的产品,从不同的投入中,包括文本,图像和视频。
摘要 - 在机器人操纵任务中,实现操纵对象的可识别目标状态通常对于促进机器人臂的运动计划至关重要。具体来说,在悬挂杯子等任务中,必须将杯子放置在钩子周围可行区域内。先前的方法已经揭示了杯子的多个可行目标状态的产生;但是,这些目标状态通常是随机生成的,缺乏对特定生成位置的控制。此限制使这种方法在存在约束的情况下,例如其他杯子已经占据的钩子或必须达到特定的操作目标时。此外,由于在现实世界中悬挂的方案中杯子和机架之间的频繁物理相互作用,因此从端到端模型中生成的目标状态通常会导致重叠点云。这种重叠会对机器人组的后续运动计划产生不利影响。为了应对这些挑战,我们提出了一种语言引导的混合高斯扩散(LHGD)网络,用于生成操纵目标状态,并结合了基于重力覆盖系数的基于重力覆盖率的基于重力覆盖率的方法。为了在语言指定的分布设置下评估我们的方法,我们在5个不同的架子上收集了多种可行的目标状态,用于10种不同的架子上的10种类型的杯子。此外,我们为验证目的准备了五种看不见的杯子设计。实验性调查表明,我们的方法在单模,多模式和语言指定的分布操纵任务中达到了最高的成功率。此外,它大大降低了点云的重叠,直接产生无碰撞的目标状态,并消除了机器人臂对额外的避免避免障碍物操作的需求。
在海洋工程中,计算流体动力学(CFD)模型对于模拟时间敏感的情况至关重要,例如预测溢油以及在海上进行搜索和救援操作。因此,创建可以有效,准确模拟实时数据的CFD模型至关重要。当前的CFD模型分为两类:慢速且计算上昂贵但准确的细化高保真模型,并且速度快,便宜但通常不准确。为了开发一个平衡计算成本和准确性的模型,我们建议使用稀疏变分高斯工艺进行闭合建模。我们模拟了二维流体流的理想情况,并通过圆柱障碍物越过,并增强了具有三种高保真模型的三种不同离散化的低保真模型。在所有离散化中,我们的增强低保真度模型保留了与高保真模型的高度准确性和相似性,并且与标准的低保真模型相比,误差明显少得多。因此,我们发现高斯过程可以有效地用于闭合流体流量。
摘要 - 构建语义3D地图对于搜索官方,仓库,商店和房屋感兴趣的对象很有价值。我们提出了一个映射系统,该系统会逐步构建一种语言包裹的高斯splat(腿):详细的3D场景表示形式,该表示同时编码外观和语义是在统一的表示中。腿在网上训练,因为机器人遍历其环境,以便可以定位开放式对象查询。我们在4个房间场景上评估了腿部,在该场景中我们查询场景中的物体,以评估腿如何捕获语义含义。我们将腿与LERF [1]进行了比较,并发现尽管两个系统都具有可比的对象查询率,但腿的训练速度比LERF快3.5倍。结果表明,多相机设置和增量捆绑捆绑调节可以提高受约束的机器人轨迹的视觉重建质量,并建议腿可以定位开放式播放器和长尾对象查询,其精度高达66%。请参阅项目网站:berkeleyautomation.github.io/legs
有几种不同类型的控制方法可用于线性和非线性系统。这些控制方法需要简单到复杂的控制器。在本项目中,通过获取状态空间模型并检查不同控制方法的开环和闭环响应来分析无尾翼火箭的俯仰稳定性。此外,根据线性二次调节器 (LQR) 的响应评估了简单但强大的比例、积分、微分 (PID) 控制器的响应。由于实际应用和案例的局限性,开发了卡尔曼滤波器 (最佳估计器) 来充分观察和获取必要的状态变量。最终,将 LQG 和卡尔曼滤波器结果和增益结合起来以获得线性二次高斯 (LQG) 控制器响应。每个部分都将定义、推导和实现必要的函数到 MATLAB 和 Simulink 中以获得最佳响应。
随着现代经典技术中集成电路 (IC) 越来越小,量子力学的作用越来越突出,因此量子技术 (基于量子力学和量子信息论的技术 [1]) 变得越来越重要。利用量子技术构建的代表是量子计算机 [2],最近利用超导量子比特已经实现。在量子信息处理中,量子纠缠 [1,3,4] 作为一种物理资源发挥着重要作用,被用于各种量子信息处理,如量子隐形传态 [5,6]、超密集编码 [7]、量子克隆 [8]、量子密码学 [9,10]、量子计量学 [11] 和量子计算机 [2,12,13]。几年前,人们开始探索纠缠辅助目标检测协议(称为量子照明 [ 14 , 15 ])及其实验实现 [ 16 – 20 ]。量子照明是一种利用量子纠缠的协议
假设检验 (HT) [1] 和量子假设检验 (QHT) [2] 在信息 [3] 和量子信息论 [4] 中发挥着至关重要的作用。HT 与通信和估计理论都有着根本的联系,最终是雷达探测任务的基础 [5],而雷达探测已经通过量子照明 (QI) 协议 [6, 7] 扩展到量子领域,更准确地说,通过微波量子照明模型 [8](有关这些主题的最新综述,请参阅参考文献 [9])。HT 和 QHT 最简单的场景是二元决策,因此它们可以简化为两个假设(零假设 H 0 和备选假设 H 1 )之间的统计区分。从最基本的层面上讲,量子雷达是一项二元 QHT 任务。两个备选假设被编码在两个量子通道中,信号模式通过这两个量子通道发送。根据目标是否存在,信号模式的初始状态会经历不同的变换,从而在输出端产生两个不同的量子态。最终的检测就简化为区分这两种可能的量子态。能否以较低的错误概率准确地做到这一点,与能否确定正确的结果直接相关。这一基本机制可以轻松地通过几何测距参数进行增强,这些参数可以量化与目标的往返时间,即目标的距离。虽然 QI 雷达可能实现最佳性能 [10],但它们需要生成大量纠缠态,这可能是一项艰巨的任务,特别是如果我们考虑微波区域的话。同时,量子雷达的定义本身可以推广到 QI 以外的任何利用量子部件或设备在相同能量、范围等条件下超越相应经典雷达性能的模型。在这些想法的推动下,我们逐步放宽 QI 的纠缠要求,并研究相应的检测性能,直到源变得刚好可分离,即
摘要。风电场的性能受到涡轮 - 摩擦相互作用的显着影响。通常,通过测量其Nacelle风速或使用涉及跨转子盘的一组离散点的数值方法来评估其Nacelle风速或通过评估其转子平均风速来对每个涡轮机进行量化。al-尽管文献中存在各种点分布,但我们引入了两种分析表达式,用于整合非轴对称的高斯唤醒,这解释了上游Turbine Yaw和Wind Veer产生的唤醒拉伸和剪切。分析溶液对应于将目标涡轮机建模为圆形执行盘和等效的矩形执行器盘。衍生的表达式具有多功能性,可容纳尾流源(上游涡轮机)和目标涡轮机之间的任何偏移和轮毂高度差。验证对转子平均的数值评估使用2000个下游位置的2000平均点置于尾流源的平均点,这表明在极端的veer条件下,在小/中度的逆转效应下,在小/中度的vever效应下,在小/中度的vever效应下两种分析溶液都具有出色的一致性。与使用16个平均点的矢量数值平均值相比,两种态解决方案在计算上都是有效的,而圆盘溶液的速度较慢约为15%,而矩形盘溶液的速度约为15%。此外,分析表达式被证明与多个唤醒叠加模型兼容,并且是可区分的,为推导分析梯度提供了基础,这对于基于优化的应用程序可能是有利的。
尽管过去十年肿瘤反应和患者生存率取得了显著进展,但肺癌全身免疫疗法仅对约一半接受治疗的患者产生客观反应。基于这一局限性,人们正在研究联合策略以提高反应率。冷冻消融已被提议作为一种诱导免疫原性细胞死亡并与全身免疫疗法(包括免疫检查点抑制剂)产生协同作用的技术。冷冻消融传统上是在影像引导下经皮进行的,尽管最近的技术进步允许通过支气管镜进行。本文,我们回顾了冷冻消融在非小细胞肺癌中的应用以及可能诱导抗肿瘤免疫的临床前和临床证据。我们重点介绍了涉及这种方法的正在进行的研究,并提出了未来的研究领域。
一些指标,例如生产率的提高会导致其他指标的下降,即结构复杂化、成本增加、可靠性降低等等[1-7]。随着处理整数数据的科学技术问题的不断复杂化,CSC 的发展趋势是提高整数算术运算的速度(生产率)和可靠性[3, 7-9]。近年来,信息技术领域的不同科学家和工程师团体在提高计算机系统计算的生产率、可靠性、生存力和可靠性方面取得的成果表明,在位置数系统 (PNS) 的限制内实现这些目标几乎是不可能的[9-13]。这是因为现代 CSC 在 PNS 中运行的主要缺点是:处理的数字之间存在位间关系。这些关系对CSC的架构和实现算术运算的方法产生负面影响,使设备复杂化,限制了执行算术运算的速度和可靠性。在这方面,在PNS中,通过增加时钟频率,使用并行数据处理的方法和工具以及使用不同类型的预留来提高CSC的性能[14-18]。基于计算并行化、利用可解任务和算法的一些属性来提高CSC生产率的基本方法并不能在每种情况下都提高CSC的生产率。它们的应用范围仅限于一类需要解决的任务。此外,人为分解算法本身、确定和分配独立计算分支及相关操作的过程需要大量的劳动力成本,而且一般来说,并行化任意算法并不总是可行的。应该指出的是,所有现有的提高 PNS 生产力的方法都有一个共同的缺点:无法解析在基本运算级别解决的最大算法。然而,这种方法并不总能解决 PNS 中执行算术运算的速度和可靠性的根本性提高问题。迄今为止,一方面对提高实时计算机系统性能的要求越来越高,另一方面无法通过使用现有的 PNS 来满足这些要求,这两者之间存在差距。这一事实导致需要找到提高生产力的方法,例如,基于在创建 CSC 时使用新的结构解决方案。近年来进行了科学研究,确定了提高计算机系统性能的有希望的方法,基于模数系统(MNS)[7-11]的使用,现有的研究较少关注MNS中位置运算的实现问题[13-15],本文将重点解决这一问题。