高程是位于已知固定高程点上方或下方的点。该固定点可以是已知海平面以上的测量高程,例如位于洪水区域的房产,也可以是任意高程点,所有其他场地高程均以此为基准。重要因素是相对于同一场地上其他点的上下相对高程。建筑物和任何附属建筑物的所有角落、房产的角落以及距离建筑物 50 英尺处都需要高程点。如果地块平面图上有等高线,则仅需要角落建筑物高程。此外,街道或道路水平的高程以及车道入口的点也需要高程。
摘要 — 与农业活动相关的梯田是人类对景观最明显的改造之一,是世界各地重要的投资,它们最近与现代土地利用管理和侵蚀控制的关注产生了新的相关性。保护性农业和梯田管理是卫星地球观测和高分辨率地形测量中具有巨大潜力的应用。由于其高灵活性,昴宿星团卫星星座提供了新的高分辨率数字高程模型 (DEM),其亚米级分辨率可能对这项任务有用,它们在农田环境中的应用如今是一个开放的研究方向。这项工作提供了初步分析,从昴宿星团图像获得的 DEM 中执行自动梯田映射,并与 LiDAR DEM 进行比较。考虑了两种现有方法,快速线段检测器 (LSD) 算法和基于表面曲率的地貌测量方法。尽管 Pleiades DEM 的性能低于 LiDAR 模型,但结果表明,Pleiades 模型可用于自动检测大于 2 m 的梯田坡度,检测率超过梯田总长度的 80%。此外,结果表明,当使用嘈杂的数字高程模型时,地貌测量方法更为稳健,并且略优于 LSD 算法。这些结果首次分析了 Pleiades DEM 作为 LiDAR DEM 的替代品的有效性,也强调了未来在农田环境中监测大面积区域所面临的挑战。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用更粗略的数据集来优化洪水模拟和测绘工作的预算。
背景和目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用不同分辨率的数字高程数据集开发的洪水模型的精度统计数据,这些模型来自光检测和测距以及干涉合成孔径雷达系统。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量和均方根误差统计测试了模型的有效性和准确性。发现:结果表明,使用光检测和测距数据集,该模型的准确率分别为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,该模型的误差矩阵、f 测量和均方根误差的准确度分别为 76%、0.34、0.53。结论:使用光检测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型具有更高的准确度。尽管如此,考虑到模型实施成本和较小的精度残差误差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用更粗的数据集来优化洪水模拟和测绘工作的预算。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
摘要 埃及尼罗河三角洲地区需要一种高精度数字高程模型 (DEM) 用于多种环境应用,特别是用于研究海平面上升和地面沉降现象的危险影响。由于埃及没有官方发布的国家 DEM,因此在地理信息系统 (GIS) 环境中使用九种空间插值方法 (SIM) 为该地区创建了一个原始的高精度局部数字高程模型 (LDEM)。插值过程是在数字化超过 220 幅比例为 1:25,000 的地形图之后进行的,从这些地图中提取了超过 810,000 个高程(点高程)点。每个 SIM 都应用了多个参数和标准,以达到最佳设置,从而生成用于环境应用的 LDEM。使用大约 200 个已知的 GPS/水准地面控制点 (GCP),将开发的 LDEM 与八个免费的全球数字高程模型 (GDEM) 进行了比较,在对所有使用的数据集应用垂直和水平基准匹配以及异常值检测程序后,对 GDEM 和 LDEM 残差进行了统计评估。此外,还计算了可靠性指数 (RI),以确定尼罗河三角洲地区的最佳 DEM。完成的结果表明,EARTHEnv-DEM90 获得了最高的 RI 5.47,是最佳的全球 DEM。对于局部 DEM 的插值方法,结论是 Kriging-b
1.获取和准备高程数据 高程数据是绘制沿海洪水地图的基础数据层。在使用高程数据绘制洪水地图之前,了解数据的要求和规格、如何评估数据质量以及从何处获取数据非常重要。本节回答以下问题: 我需要什么类型和质量的数据?在哪里可以找到高程数据和产品?如何选择适合我的数据?如何创建高程表面?如何构建数字高程模型 (DEM)?2.准备水位 水面是水与空气界面的二维表示。要绘制洪水地图,必须生成水面。表面可以基于模型输出、插值表面或单个深度值。本节讨论了对淹没表面进行建模的不同模型和方法,以回答以下问题:我想要绘制哪种类型的水面?我应该使用什么垂直参考基准?准备水位需要哪些步骤?3.绘制淹没地图 借助数字高程模型 (DEM) 和水位信息,GIS 流程可用于创建表示淹没范围和深度的图层。本节回答以下问题:如何绘制水面地图?