上下文。目标。我们解释说,黑洞是量子信息最有效的电容器。因此,预计所有能力高级文明最终都会在其量子计算机中使用黑洞。方法。我们使用用于研究黑洞物理学的方法并应用Drake公式,我们可以估计观察性特征。结果。随附的鹰辐射在粒子物种中是民主的。因此,外星量子计算机将在我们探测器的潜在灵敏度范围内的普通颗粒(例如中微子和光子)中辐射。结论。这是SETI的新途径,包括完全由隐藏粒子物种组成的文明,专门通过重力与我们的世界相互作用。
这个思想实验有电磁和引力两种版本;讨论适用于其中一种或两种。在时间 t = 0 之前,爱丽丝开始用自旋在 x 方向的粒子,并将其送入施特恩-格拉赫装置,从而将其置于自旋“向上”和自旋“向下”各 50%-50% 的叠加态中。在 t = 0 之前,鲍勃将他的粒子放在一个陷阱中。从时间 t = 0 开始,爱丽丝将她的粒子送入“逆向施特恩-格拉赫装置”,并确定其相干性(例如,通过测量其 x 自旋)。在时间 t = 0 时,鲍勃从陷阱中释放他的粒子,并试图通过测量爱丽丝粒子的库仑/牛顿场强度来获取爱丽丝粒子的“哪条路径”信息。如果爱丽丝和鲍勃在彼此光程时间内完成测量,爱丽丝的叠加态会保持相干性吗?
过去几十年来,黑洞信息悖论一直备受争议,但尚未得到完全解决。因此,人们希望在简单且可通过实验获得的系统中找到该悖论的类似物,这些系统的解决可能有助于解决这个长期存在的基本问题。在这里,我们识别并解决了 Halperin-331 和 Pfaffian 态之间量子霍尔界面中明显的“信息悖论”。当阿贝尔 331 准粒子穿过界面进入非阿贝尔 Pfaffian 态时,其伪自旋自由度携带的信息会被打乱,无法进行局部测量;从这个意义上说,Pfaffian 区域是黑洞内部的类似物,而界面的作用类似于黑洞的视界。我们证明,一旦“黑洞”蒸发,准粒子返回 331 区域,“丢失”的信息就会恢复,尽管是高度纠缠的形式。这种恢复可以通过这些准粒子所携带的熵的佩奇曲线来量化,这些准粒子是霍金辐射的类似物。
我们研究高度激发量子态的相对熵。首先,我们从 Wishart 集合中抽取状态,并开发出一种大 N 图解技术来计算相对熵。该解决方案以基本函数的形式精确表示。我们将分析结果与小 N 数值进行比较,发现它们完全一致。此外,随机矩阵理论结果与混沌多体本征态的行为精确匹配,这是本征态热化的表现。我们将这种形式应用于 AdS = CFT 对应,其中相对熵测量不同黑洞微态之间的可区分性。我们发现,即使观察者对量子态的访问量任意小,黑洞微态也是可区分的,尽管这种可区分性在牛顿常数中非微扰地小。最后,我们在子系统本征态热化假设 (SETH) 的背景下解释这些结果,得出结论,全息系统服从 SETH,直到子系统达到整个系统的一半大小。
经典和量子信息可以进入黑洞的事件视野。然而,通常假定从后期出现的东西只是携带微小信息的热鹰辐射[1]。因此,当黑洞完全蒸发时,所有ingoing信息显然会永远消失。本质上是所谓的信息损失问题。图1和2中的Penrose图证明了这一点。图1描绘了一个固定的Schwarzschild(无旋转,未充电)黑洞。在这种情况下,奇异性是空间般的,很明显,从地平线内部传播的信息(沿空(或及时)的大地测量学传播无法到达外部宇宙。当黑洞蒸发时,情况不会改善,从同一图中的第二个图可以看出。类似地,图2显示了最大扩展旋转的kerr黑洞的penrose图,现在奇异性是及时的。在这种情况下,尽管信息(再次沿空射线传播)可以退出未来的视野,但仅仅是在另一个宇宙中出现的信息。换句话说,信息损失问题仍然存在于当前宇宙中。在这里可以注意两个点:i。旋转黑洞,带电的黑洞以及带电和旋转黑洞的penrose图实际上是相同的,ii。自然界中的所有黑洞(与其他天文学物体一样)都是旋转且未充电,并且发现零旋转的黑洞的概率实际上是零。明显的地平线是定时的。这得到了理论研究[2]以及最近的重力波和其他观察结果的支持[3,4]。1因此,以后我们只考虑旋转黑洞,只要它具有一定的角度动量,无论多么小,因果结构和我们的分析将在黑洞的寿命中保持有效。此外,除了在黑洞寿命的尽头,时空曲率很小,我们的结果很健壮且完全值得信赖。尤其是在本文中,我们表明,对于一个正在散发辐射的黑洞,有一个经典的通道可以通过该通道,并且遵循上述推理,它提供了从其内部恢复的信息延长的窗口。在此过程中,黑洞当然会收缩,但是由于信息和相关物质的额外流量,因此比鹰辐射的预测更快。我们还将在计算中允许非零电荷Q,因为这不会引起任何额外的并发症。我们通过为上述过程构造Penrose图来演示上述内容。并证明以下内容:1。立即围绕r = 0的区域是及时的,2。结果1和2意味着源自黑洞中心附近任何地方到明显的地平线的任何零用测量学。这反过来为经典或量子信息提供了从黑洞逃脱的途径。在任何试图解决信息损失问题的尝试中,必须考虑大量信息。最重要的是,逃避信息不是热的事实。
另请参阅:体量子场的熵和蒸发黑洞的纠缠楔。A. Almheiri、N. Engelhardt、D. Marolf、H. Maxfield。arXiv:1905.08762。从半经典几何看霍金辐射的佩奇曲线。A. Almheiri、R. Mahajan、J. Maldacena、Y. Zhao。arXiv:1908.10996。复制虫洞和霍金辐射的熵。A. Almheiri、T. Hartman、J. Maldacena、E. Shaghoulian、A. Tajdini。arXiv:1911.12333。其他重要工作作者:Akers、Harlow、Bousso、Tomasevic、Chen、Fisher、Hernandez、Myers、Ruan、Rozali、Van Raamsdonk、Sully、Waddell、Wakeham
自然界中实现的广义相对论的紫外完备性尚不清楚。弦理论是一个强有力的候选者,尽管不是唯一的候选者。但是,即使我们不知道紫外完备理论,我们也可以问,与我们在低能下观察到的现象的一致性如何制约量子引力。相反,任何候选的量子引力基本理论都必须能够解释所有低能现象,我们希望测试这种能力。黑洞可能是这些问题表现出来的最简单的系统,因此它们代表了量子引力的完美试验场。由于它们发挥的作用类似于氢原子在 20 世纪初量子力学发展中发挥的作用,因此人们经常说黑洞是量子引力的氢原子。
2量子黑洞3 2.1地平线的几何形状。。。。。。。。。。。。。。。。。。。。3 2.2共形物质:能量动力学。。。。。。。。。。。。。。6 2.3鹰辐射。。。。。。。。。。。。。。。。。。。。。。。。8 2.4用于霍金辐射的水库。。。。。。。。。。。。。。。。9 2.5黑洞热力学。。。。。。。。。。。。。。。。。。。10 2.6 JT重力。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.7黑洞在JT重力中。。。。。。。。。。。。。。。。。。。。12 2.8 Schwarzian描述。。。。。。。。。。。。。。。。。。。13 2.9 Schwarzian的对称起源。。。。。。。。。。。。。。。15 2.10半经典近似。。。。。。。。。。。。。。。。16 2.11 JT中的蒸发。。。。。。。。。。。。。。。。。。。。。。。。17212地平线。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19 div>
1 马克斯普朗克量子光学研究所,Hans-Kopfermann-Strasse 1, 85748 Garching,德国 2 哥本哈根大学数学科学系 QMATH,Universitetsparken 5,2100 Copenhagen,丹麦 3 微技术和纳米科学,MC2,查尔姆斯理工大学,SE-412 96 Göteborg,瑞典 4 滑铁卢大学应用数学系,滑铁卢,安大略省,N2L 3G1,加拿大 5 巴西物理研究中心 (CBPF),里约热内卢,CEP 22290-180,巴西 6 都柏林大学学院数学与统计学院,Belfield,都柏林 4,爱尔兰 7 滑铁卢大学量子计算研究所,滑铁卢,安大略省,N2L 3G1,加拿大 8 滑铁卢大学物理与天文系加拿大安大略省滑铁卢市滑铁卢市 N2L 3G1 9 加拿大安大略省滑铁卢市 Caroline Street N 31 号圆周理论物理研究所 N2L 2Y5