黑洞是量子引力中令人着迷的物体。从相当平凡的初始条件(如坍缩的恒星)开始,大自然能够产生一种将短距离涨落放大到宏观尺寸的几何形状。这种时空的“拉伸”绕过了高能物理与低能物理的威尔逊解耦,使普朗克尺度动力学的深层问题与低能(思想)实验相关。1 事实上,在一对非凡的经典论文 [ 1 , 2 ] 中,斯蒂芬霍金首先论证了这种涨落的拉伸会导致黑洞蒸发,其次认为蒸发过程不符合纯态总是演化为其他纯态的量子力学原理。这个结论通常被称为黑洞信息问题,在霍金发表论文后的近 40 年里,它引发了大量的研究。信息真的丢失了吗?如果没有,那么阻止信息丢失的普朗克干涉的本质是什么?这些问题已经取得了重大进展,但最近的研究强调了我们仍然没有令人满意的答案。这些讲座的目的首先是尽可能多地介绍用于制定和分析这些问题的技术,其次是概述导致最近该主题研究激增的新悖论。我还将讨论一些为解决悖论而提出的建议,但我绝不会进行全面的回顾;我一直尽力将教学法置于完整性之上。当然,在目前如此混乱的领域,我对应该包括哪些材料的看法会有些特殊。一般来说,我试图给出或至少概述事物的“真实”论据。当主题的基础像这里一样受到质疑时,我认为应该尽可能避免草率的逻辑。偶尔,材料的某些细节是新的,但我不会试图引起人们对其的注意,因为这会很尴尬和乏味,而且无论如何,我的“改进”大多是表面的。
在给定的真空中,boltzmann脑成核速率γbb I与该真空γi的总衰减速率的比率大致给出。这里γbb i是玻尔兹曼大脑的速度
史瓦西黑洞内部包含将其与类空奇点分隔开的测地线边界。任何跨越测地线边界向奇点迁移的信息都会因因果关系而不可挽回地丢失。如果史瓦西奇点吸收信息,则相应的演化将被视为悖论,因为它违反了信息处理的神圣规则 [1] 。人们通常认为时空涨落会变形其测地线边界附近的史瓦西几何,从而产生一致的量子演化。虽然这种动力学正则化机制的细节尚不清楚,但它们对于黑洞量子信息处理的整体方面(例如黑洞信息悖论 [2 – 4] )非常重要。在本文中,我们表明史瓦西奇点毗邻渐近静默时空区域,即无论初始场配置如何都会抑制空间量子关联的区域。更重要的是,它们适应所谓的 Zeno 边界,该边界标记了由测地线边界终止的超曲面堆栈,具有以下属性:在堆栈中填充量子信息的概率测度朝着奇点单调递减,并在测地线边界处消失。因此,量子事件无法探测测地线边界,量子信息也无法迁移
在Hawking的突破性论文[1]中,通过在静态的施瓦兹柴尔德背景上考虑量子字形理论,这表明了如何自然得出的结论,即黑洞本质上是热对象:QFT真空是不稳定的,并且在水平方面产生了辐射的不稳定模式,该模式应在水平上产生,这应该在水平上构成黑色的温度,并且是在黑色的温度上,并且既有又有一定的效果。特别是,人们可以想到创建的粒子 /抗粒子对的简化描述,一种ingo,另一个是外向的。ingo ingo被黑洞吸收并减少其能量,从而减少其质量和大小,其特征是s = 2 g n M的Schwarzschild Radius。另一方面,即将离任的粒子离开黑洞并可以由辐射形式的观察者检测到黑洞。这个新颖的思想导致了引力系统和热力学物理学之间的深刻且曾经是不受欢迎的联系,这在经典的一般相对论中并不明显。也许可以被认为是在20世纪开发的两种伟大物理学的某些方面的第一次成功尝试:相对论的引力描述和量子力学描述的显微镜世界。的确,虽然量子重力的完整理论仍然是一个高度挑战性的问题,但霍金的贡献仍然高度相关,这证明了霍金的见解深度。Hawking以一种非常简洁的方式来总结其与之相关的概念的巨大统一:重力,热力学和量子力学。由
摘要:最近有几篇论文表明,纠缠楔重构与 AdS/CFT 中黑洞蒸发的幺正性之间存在密切的关系。然而,这些论文的分析有一个相当令人费解的特点:所有计算都是使用体动力学进行的,而体动力学本质上是霍金用来预测信息丢失的动力学,但应用纠缠楔重构的思想似乎表明佩奇曲线与信息守恒一致。为什么同一模型中的两个不同计算会给出不同的佩奇曲线答案?在本文中,我们提出了一对新模型来澄清这种情况。我们的第一个模型给出了幺正黑洞蒸发的全息图解,其中霍金辐射的类似物按预期净化自身,这种净化由纠缠楔分析重现。此外,光滑的黑洞内部一直持续到蒸发过程的最后阶段。我们的第二个模型对体积演化导致信息丢失的情况给出了另一种全息解释:与迄今为止提出的模型不同,这种体积信息丢失可以通过纠缠楔分析正确再现。这说明量子极值表面在某种意义上是运动学的:它们计算的熵的时间依赖性取决于体积动力学的选择。在这两个模型中,都无需考虑体积量子校正:经典极值表面足以完成这项工作。我们认为,我们的第一个模型是对蒸发黑洞实际发生情况的正确类比,但我们也强调,任何信息问题的完全解决都需要了解非微扰体积动力学。
摘要:最近有几篇论文表明,纠缠楔重构与 AdS/CFT 中黑洞蒸发的幺正性之间存在密切的关系。然而,这些论文的分析有一个相当令人费解的特点:所有计算都是使用体动力学进行的,而体动力学本质上是霍金用来预测信息丢失的动力学,但应用纠缠楔重构的思想似乎表明佩奇曲线与信息守恒一致。为什么同一模型中的两个不同计算会给出不同的佩奇曲线答案?在本文中,我们提出了一对新模型来澄清这种情况。我们的第一个模型给出了幺正黑洞蒸发的全息图解,其中霍金辐射的类似物按预期净化自身,这种净化由纠缠楔分析重现。此外,光滑的黑洞内部一直持续到蒸发过程的最后阶段。我们的第二个模型对体积演化导致信息丢失的情况给出了另一种全息解释:与迄今为止提出的模型不同,这种体积信息丢失可以通过纠缠楔分析正确再现。这说明量子极值表面在某种意义上是运动学的:它们计算的熵的时间依赖性取决于体积动力学的选择。在这两个模型中,都无需考虑体积量子校正:经典极值表面足以完成这项工作。我们认为,我们的第一个模型是对蒸发黑洞实际发生情况的正确类比,但我们也强调,任何信息问题的完全解决都需要了解非微扰体积动力学。
在1976年引入信息损失问题的四十年中,这是一个目前的想法,现在,在2020年,它已经解决了一个方面。这方面涉及通过在最终辐射状态下执行的操作从黑洞内部恢复初始插入物质状态。Arriving at the solution involved integrating key historical and recent works such as Page's 1993 study of entropies in black hole evaporation, Ryu-Takayanagi's 2006 holographic area relation, Faulkner, Lewkowycz and Maldacena's and Engelhardt and Wall's extensions to the area relations in 2013 and 2015 respec- tively, Penington's work on entanglement wedges in 2019 and Almheiri,Mahajan,Maldacena和Zhao于2019年在岛上的猜想中的工作。本论文回顾了这些选定的作品。
为什么黑洞与量子引力有关?与广义相对论方程的所有其他解一样,它们是先验的完全经典的对象。然而,一个令人惊讶的特征是它们表现出热力学性质。普通热力学定律是许多微观状态集合的宏观、粗粒度描述;例如,使用统计力学,可以从气体动力学理论中推导出这些定律。同样,黑洞热力学定律可以看作是广义相对论提供的低能有效理论中引力的突现特性。了解黑洞热力学如何随着能量的增加而改变,可能会揭示一些关于量子引力基本理论的信息,从而为时空的量子结构提供一个窗口。相反,应该可以从量子引力的基本理论出发,采取一些适当的粗粒度极限,推导出黑洞热力学及其修正。
尽管现在可以通过classical的一般相对论很好地描述了引力,但存在一些问题的问题。奇异性是最基本的。penrose提出了第一个奇异定理的第一个版本[1],而霍金和彭罗斯[2]证明了一个更一般性的定理[1],该版本指出,在某些常见的物理条件下,不可避免的是,时空奇异性是不可避免的。一个人应该如何治疗时空奇点?我们可能期望重力理论可以治愈时空的罪行。量子重力的候选理论之一是循环量子重力(LQG),它是一种与背景无关和非扰动方案[3-10]。在循环量子宇宙学(LQC)的背景下,宇宙学大键奇异性在理论上和数字上得到了解决[11-15]。对于Schwarzschild Black Hole(BH)的奇异性,旨在通过使用LQG中开发的技术来量化BH内部的一些尝试[16-24]。此外,还研究了不同模型中BH形成或重力崩溃的LQG校正[25-35]。