二旋疾病黑色素氧基于Ebenaceae家族的开花植物,树皮坚硬且脱水[4]。它有很大的预期名词通过印度东南部海岸Coromandel获得。根据Troup(1921)Diospyros Melanoxylon(D. tomentosa和D. tupru的详尽)是普遍穿过印度干燥落叶森林地区的最具品牌名称的树木之一[5] Coromandel[6].该植物在南部的尼尔吉里斯和塞拉瓦利斜率上也相似。白话称为Temburini。二旋植物与家庭埃比尼科有一个斑点,该家族有400多种在地球的热带和亚热带地区传播的[7]。
基因组操作是一种有用的方法,可用于阐明发育、生理和行为方面的分子途径。然而,由于缺乏适用于珊瑚鱼的基因编辑工具,因此它们许多独特特征的遗传基础仍有待研究。一种适合应用这种技术的标志性珊瑚鱼群是海葵鱼 (Amphiprioninae),因为它们与海葵共生、雌雄同体、复杂的社会等级、皮肤图案发展和视觉,并且相对容易在水族箱中饲养,因此被广泛研究。在这项研究中,我们开发了一种基因编辑方案,用于将 CRISPR/Cas9 系统应用于眼斑海葵鱼 (Amphiprion ocellaris)。受精卵的显微注射用于证明我们的 CRISPR/Cas9 方法在两个不同靶位点的成功应用:与视觉有关的视紫红质样 2B 视蛋白编码基因 (RH2B) 和与黑色素生成的酪氨酸酶生成基因 (tyr)。对眼斑海马胚胎中测序的靶基因区域进行分析表明,注射胚胎的吸收率高达 73.3%。进一步分析亚克隆的突变基因序列并结合扩增子散弹枪测序表明,我们的方法在 F0 眼斑海马胚胎中产生双等位基因突变的效率为 75% 到 100%。此外,我们清楚地显示了 tyr 突变胚胎的功能丧失,其表现出典型的低黑色素表型。该方案旨在作为进一步探索 CRISPR/Cas9 在眼斑海马中潜在应用的有用起点。眼斑鱼,作为研究小丑鱼和其他珊瑚鱼基因功能的平台。
[图片来源:黑色素瘤图片] 当皮肤细胞的 DNA 损伤未修复(通常是由太阳或日光浴床的紫外线引起)引发突变(基因缺陷)时,就会形成癌性肿瘤,导致皮肤细胞快速繁殖并形成恶性肿瘤。这些肿瘤起源于表皮基底层产生色素的黑色素细胞。黑色素瘤通常类似于痣。一些黑色素瘤是由痣发展而来的。大多数黑色素瘤是黑色或棕色的,但也可能是皮肤色、粉色、红色、紫色、蓝色或白色。黑色素瘤主要是由强烈的、偶尔的紫外线照射引起的(经常导致晒伤),尤其是那些有遗传易感性的人。 Lodde, G.、Zimmer, L.、Livingstone, E.、Schadendorf, D. 和 Ugurel, S. 2020.“恶性黑色素瘤是一种侵袭性皮肤癌,源自黑色素细胞谱系细胞,具有侵袭性生长模式和早期扩散。除了白皙皮肤类型或多发性痣形成的遗传倾向等内源性风险因素外,紫外线照射是最重要的外源性风险因素。原发性肿瘤患者的治疗包括以适当的安全范围完全切除原发病灶,对于转移风险较高的患者,应切除前哨淋巴结。具有预后意义的参数包括 Breslow 侵袭深度、原发病灶溃疡和前哨淋巴结状态。全身治疗在辅助治疗和无法手术的肿瘤中起着重要作用。根据适应症和肿瘤组织的分子特征,可以使用免疫检查点抑制剂或靶向激酶抑制剂,并可能显著延长生存时间。”
黑色素瘤是体内产生皮肤色素(黑色素细胞)的细胞的癌症。在狗中,黑色素瘤最常发生在皮肤、口腔、脚趾甲和眼睛中。某些品种比其他品种更容易患上黑色素瘤,包括贵宾犬、腊肠犬、罗威纳犬、可卡犬、爱尔兰塞特犬、苏格兰梗犬、松狮犬、迷你雪纳瑞犬、拉布拉多犬、拳师犬和金毛猎犬。黑色素瘤最常见于中老年犬。猫中黑色素瘤相对罕见,最常见于眼睛。猫的其他受累部位包括嘴唇、口腔或鼻粘膜或鼻平面。
黑色素瘤,也称为黑皮肤癌,是皮肤色素细胞(黑色素细胞)的退化。在德国,每年有超过 22,000 人患上这种皮肤癌(截至 2019 年),男性和女性的患病率大致相同 [Robert Koch Institute 2022]。年龄发病率显示,50岁以后新发病例显著增加,女性发病年龄中位数为62岁,男性发病年龄中位数为68岁。自2008年德国引入皮肤癌筛查以来,新发病例数量急剧增加。然而,在过去十年中,男性的发病率基本保持稳定,女性的发病率略有下降 [Robert Koch Institute 2022]。黑色素瘤转移率很高,是造成所有皮肤癌相关死亡的大多数原因,每 100,000 人死亡率为 1.4 人(女性)和 2.6 人(男性) [Robert Koch Institute 2022]。
本研究旨在将细菌从白色的卵中分离出来,这些细菌可以产生颜料,并可能在纺织工业中用作染料。通常,细菌出于各种原因产生色素,并且起着重要作用。细菌产生的一些色素显示出针对病原体的抗菌活性。这些细菌产生的这些抗菌剂或物质成功地用于预防和治疗微生物疾病。诸如类胡萝卜素,黑色素,黄素,维紫素,protigiosin之类的色素对许多致病细菌显示出明显的抗菌作用。被污染的卵可能会产生细菌,例如沙门氏菌属,proteus spp。,bacillus spp。,pseudomonas spp。和葡萄球菌属,它们的鞭毛可以使它们穿过毛孔。通过使用有机溶剂提取这些细菌,并以薄层色谱法进行纯化和特征,并优化为染色参数。获得的染料是化学染料的替代来源。
某些厌氧菌需要添加维生素K和Hemin(1,2)才能生长。因此,建议将硫代糖果培养基和维生素K用于分离和培养临床材料中存在于临床材料中存在的刺激性或缓慢增长的强制性厌氧微生物。也建议将多种有氧和辅助厌氧微生物分离和培养。色氨酸和酵母提取物提供氮化合物,维生素B复合物以及其他必要的生长养分,可用于细菌代谢。硫代基酸钠和l-cyst ine充当减少剂并在培养基中保持低氧张力。维生素K是某些prevotella黑色素毒素菌株的生长需求。顶部的粉红色环(氧化培养基)是由于硫唑蛋白指示剂引起的。hemin是X因子的来源,它刺激了许多微生物的生长。
图 2:芯片上嵌入 hMO 的明场图像 (A)。沿施加的流动方向排列的神经胶质和神经元突起:TH(红色)、GFAP(绿色)、MAP2(洋红色)(B)。芯片上中脑微组织的生长曲线。通过混合效应分析和 Tukey 检验确定的统计学意义 *p<0.033、**p<0.002、***p<0.001(n=8-10,来自 3 个独立的类器官代)(C)。静态(上图)和动态(下图)培养的 hMO 的明场图像描绘了神经突生长的差异(左图)(D)。静态和动态培养的 hMO 的最大神经突生长率的箱线图。通过 Mann-Whitney 检验确定的统计学意义 *p<0.033、**p<0.002、***p<0.001。 (n >= 3,来自 3 个独立的类器官代)(F)。显微照片和 hMO 免疫组织化学染色切片的相应定量分析显示分化 35 天后凋亡标志物 caspase 3 存在显著差异。通过 Welch t 检验确定统计学意义 *p<0.033、**p<0.002、***p<0.001。柱状图和误差线表示平均值 ± SEM(n >= 3,来自 3 个独立的类器官代)(E、G)。分化 60 天后的完整中脑类器官:TH(红色)、GFAP(绿色)、MAP2(洋红色)、细胞核(蓝色)(H)。放大 60 倍的完整 hMO 核心的放大细节(H)(I)。MAP2 阳性神经元的免疫荧光染色(J)。 GFAP 阳性星形胶质细胞的免疫荧光染色 (K)。TH 阳性多巴胺能神经元的免疫荧光染色 (L)。中脑类器官中神经黑色素聚集体的明场图像 (右图) 和相应的 Fontana Masson 染色显示细胞内和细胞外神经黑色素聚集 (左图) (M)。
文章历史:收到日期:2024 年 9 月 12 日/接受修订版日期:2024 年 11 月 16 日 © 2012 伊朗药用植物协会。保留所有权利 摘要 酪氨酸酶是黑色素合成的关键酶。因此,许多酪氨酸酶抑制剂已经在化妆品和药物中进行了测试。本研究的目的是比较没食子酸和 α-蒎烯的抗酪氨酸酶潜力。初步分析是使用分子对接方法进行的。然后,使用蘑菇酪氨酸酶进行实验室实验,以儿茶酚为底物,曲酸为酶的标准抑制剂。使用 DPPH 自由基评估没食子酸和 α-蒎烯的抗氧化活性。对接得分显示没食子酸对酪氨酸酶具有强结合亲和力(ΔG = -6.33 Kcal/mol),与Met 280形成H键,与His 263形成π-π堆积。α-蒎烯只能通过疏水相互作用与活性口袋结合,导致结合亲和力较低(ΔG = -3.89 Kcal/mol)。没食子酸表现出最高的抑制效果(IC 50 = 0.130 mg/mL),而α-蒎烯表现出较低的抑制能力(IC 50 = 0.392 mg/mL)。抑制类型为曲酸的竞争性抑制和没食子酸的非竞争性抑制。在DPPH自由基清除测试中,没食子酸和α-蒎烯的EC 50值分别为0.269 mg/mL和251.2 mg/mL。计算机模拟和实验室结果几乎相同。尽管 α-蒎烯对酪氨酸酶的抑制剂作用不如没食子酸强,但增加其浓度或许可以增强其作用。没食子酸的抗氧化潜力明显高于 α-蒎烯,因此从这个角度来看,没食子酸更无害,安全性更高。 关键词:酪氨酸酶,α-蒎烯,没食子酸,黑色素 引言 酪氨酸酶 (EC 1.14.18.1) 属于 3 型含铜蛋白家族 [1]。保守活性位点中的两个铜离子 Cu-A 和 Cu-B 由 6 个组氨酸残基配位 [2]。酪氨酸酶也是节肢动物角质层形成和植物褐变的重要因素 [3]。它还参与伤口愈合、紫外线防护和酚类解毒 [4]。酪氨酸酶和氧化酶一样,是许多生物体黑色素生成的基本酶,对色素沉着至关重要。催化 L-酪氨酸转化为 L-多巴是黑色素形成酶促途径的限速步骤 [5]。1895 年,Bourquelot 和 Bertrand 首次从蘑菇中分离出酪氨酸酶。此后,酪氨酸酶已从多种细菌、真菌、植物和动物来源中分离和纯化。酪氨酸酶的结构包含三个结构域:N 端、中心和 C 端结构域 [6]。酪氨酸酶抑制剂种类繁多,其中大多数已用商业蘑菇酪氨酸酶进行测试,与哺乳动物酪氨酸酶相矛盾。然而,最近的研究报告显示,蘑菇酪氨酸酶和人类酪氨酸酶的抑制剂效果存在显著差异 [7]。几种酪氨酸酶抑制剂的抑制效果表明,抗坏血酸是人类酪氨酸酶和蘑菇酪氨酸酶的最佳抑制剂,并且以最低 IC 50 值来衡量 [8]。对苯二酚、曲酸和熊果苷是最著名的酪氨酸酶抑制剂,但它们具有严重的副作用,例如永久性脱色、红斑和接触性皮炎 [9]。此外,Chiari 等人对来自阿根廷中部的 91 种本土植物进行了酪氨酸酶抑制活性研究 [10]。尽管已报道了许多合成酪氨酸酶抑制剂,但只有熊果苷和曲酸等少数几种在商业上得到使用,主要是因为其具有细胞毒性高、穿透力不足、活性低和稳定性低等缺点 [11]。
Class of 2022, Sheerin Alandejani , Ph.D., Molecular and Cellular Biology , Thesis Sponsor(s): Norin, Allen Thesis: Identification and Cytolytic Function of a Novel NK Cell Surface Receptor that Binds Haymaker on the K562 Leukemia Cell Line Last reported position: Researcher, Saudi National Guard Research Center, Riyadh, Saudi Arabia Class of 2022,埃文·奥斯汀(Evan Austin),博士,分子和细胞生物学,论文赞助商:贾格德(Jagdeo),贾里德(Jared),贾里德(Jared)论文:发光二极管的红光作为黑色素瘤疗法,作为一种黑色素疗法,最后报道了立场:居民,皮肤病学,纽约州纽约州布鲁克林,纽约州纽约州202222222222,ROBERT G.W.