基因工程小鼠(GEM)模型通常用于生物医学研究中。生成的宝石涉及需要复杂的设备和高技能技术人员的复杂实验程序。由于这些原因,大多数研究机构都建立了集中的核心设施,在这些核心设施中为研究小组创建了自定义的宝石。研究人员开始考虑为研究生成宝石时,他们的脑海中出现了几个问题。例如,哪种类型的模型对我的研究最有用,我如何设计它们,最新的技术和工具是用于开发我的模型的最新技术和工具,最后如何在我的研究中培养宝石。由于鼠标设计中有几个注意事项和选择,而且由于这是一项昂贵且耗时的努力,因此仔细的计划可以确保成功的最大机会。在本文中,我们为研究人员开始考虑为他们的工作生成鼠标模型时出现的几个常见问题提供了简短的答案。
1 大学。格勒诺布尔阿尔卑斯, CNRS, 格勒诺布尔 INP, LJK, 38000 格勒诺布尔, 法国 2 雷恩大学 2, LP3C EA 1285, 35000 雷恩, 法国 3 大学格勒诺布尔阿尔卑斯大学。Savoie Mont Blanc,LIP/PC2S,38000 Grenoble,法国 这项工作得到了 Pôle Grenoble Cognition 和法国国家研究机构在“Investissements d'avenir”计划 ANR-15-IDEX-02 和 ANR-11-LABX-0025-01 框架内的支持。我们感谢 Alisée Bruno 在实验 1 中对数据收集的帮助。*通讯作者:Annique Smeding,BP 1104,73011 Chambéry cedex,法国。电话:+33 4 79 75 85 89;电子邮件:annique.smeding@univ-smb.fr Jean-Charles Quinton,LJK - Bâtiment IMAG, 700 Avenue Centrale, 38401 Domaine Universitaire de Saint-Martin-d'Hères,电话:+33 4 57 42 17 78,电子邮件:quintonj@univ-grenoble-alpes.fr
本文档中提供的方法是由IDT客户提供的,他们在实验中使用了Alt-R CRISPR-CAS9系统。本文档可以作为在类似模型生物中使用Alt-R CRISPR-CAS9系统的起点,但可能无法针对您的基因或应用进行完全优化。idt不保证方法或任何此类方法的任何性能。IDT应用程序专家只能提供有关本文档中概述的方法的一般技术支持和故障排除支持。
BD Horizon Realblue™780(RB780)染料是BLD染料家族的一部分。这是一个串联荧光色体,在498 nm处具有最大激发(EX MAX),在781 nm处发射最大(EM MAX)。由BD创新驱动,RB780可以在光谱和常规的细胞仪上使用,并被蓝色激光器(488-nm)兴奋,而561 nm黄绿色激光器的激发极少。对于配备蓝色激光器(488 nm)的常规仪器,RB780可以用作PE-CY7的替代方案,我们建议使用以780 nm接近的光滤光片(例如,780/60-nm带通滤波器)。用于配备蓝色激光器(488 nm)的光谱仪器,可以与PE-CY7结合使用。RB780平均比PE-CY7亮,并且在黄绿色探测器中溢出最少。
虚拟鼠标控制器具有广泛的应用程序,尤其是在卫生和可访问性的环境中,例如在医疗环境,公共信息亭和交互式显示中。它还提供了传统输入设备的更符合人体工程学的替代方案,减少了应变并在扩展计算机使用过程中促进更健康的姿势。此外,可以对系统进行自定义以支持各种手势和个性化配置,从而适应各种用户和任务。通过增强残障人士的可及性并提供更直观的界面,虚拟鼠标控制器展示了基于手势的技术在革新人类计算机互动中的潜力,为日常计算和专业应用开辟了新的可能性。
鼠标是人机交互 (HCI) 技术的一项伟大发明。目前,无线鼠标或蓝牙鼠标仍然使用设备,并且并非完全摆脱设备,因为它使用电池供电并使用加密狗将其连接到 PC。在所提出的 AI 虚拟鼠标系统中,可以通过使用网络摄像头或内置摄像头捕捉手势并使用计算机视觉检测手指尖来克服这一限制。系统中使用的算法利用了机器学习算法。基于手势,可以虚拟控制计算机,并且可以执行左键单击、右键单击、滚动功能和计算机光标功能,而无需使用物理鼠标。该算法基于深度学习来检测手部。因此,所提出的系统将通过消除人为干预和对设备控制计算机的依赖来避免 COVID-19 传播。Python 编程语言用于开发 AI 虚拟鼠标系统,此外,AI 虚拟鼠标系统还使用了计算机视觉库 OpenCV。在所提出的 AI 虚拟鼠标系统中,该模型利用 MediaPipe 包来跟踪手部和手尖,同时还利用 Py input、Autopy 和 PyAutoGUI 包在计算机窗口屏幕上移动以执行左键单击、右键单击和滚动等功能。所提出的模型的结果显示出非常高的准确度,并且所提出的模型可以在使用 CPU 而无需使用 GPU 的情况下在实际应用中很好地工作。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年9月15日。 https://doi.org/10.1101/2023.09.14.557789 doi:Biorxiv Preprint
代谢功能障碍相关的脂肪变性肝病(MASLD)代表了即将来临的全球健康挑战。当前的管理策略通常面临挫折,强调了忠实地模仿人类疾病及其合并症的临床前模型的需求。肝脏疾病进展加剧饮食(LIDPAD)是一种饮食引起的鼠模型,在热源性条件下进行了广泛的特征,并引入了饮食,以确保可重复性并最大程度地减少物种的差异。遗漏概括了人类MASLD的关键表型,遗传和代谢标志,包括多机器人通信以及4至16周内的疾病进展。这些发现揭示了肠肝功能障碍作为早期事件和代偿性胰岛增生,强调了Masld发病机理中的肠胰腺轴。对于转录组引导的疾病分期,还详细介绍了一条强大的计算管道,对多个统一的人类肝转录组数据集进行了验证,从而实现了人与小鼠模型之间的比较研究。这种方法强调了Lidpad模型与人类MasLD的显着相似性。Lidpad模型对人类MASLD的实现是通过对饮食干预措施的反应来进一步确认的,并改善了代谢性纤维,肝组织病理学,肝转录组和肠道微生物多样性的改善。这些结果以及人类MASLD和LIDPAD模型之间与疾病相关的分子特征的紧密对齐,这是该模型的相关性和推动治疗性发育的潜力。
对与计算机的免提交互的需求不断增长,导致开发基于手势识别的系统,用于控制鼠标和键盘等虚拟输入设备。本文使用计算机视觉技术提出了一种基于手势控制的新方法,在该技术中,手势被捕获并处理以执行鼠标和键盘操作。系统利用实时手势识别算法将特定的手移动映射到相应的动作,例如鼠标运动,点击,滚动和文本输入。通过使用机器学习和图像处理技术,该系统为传统输入设备提供了直观且易于访问的替代方案。所提出的架构设计为强大且适应各种环境,为用户提供无缝的互动体验。该研究还强调了挑战,例如环境噪声,照明条件和手势准确性,同时提出了克服这些局限性的潜在解决方案。该系统在可访问性,辅助技术和免提计算等领域中具有广泛的应用。