鼻腔内给药的一般概念基于这样的前提:这种非侵入性给药途径至少可以部分采用直接从鼻腔到脑的运输,从而避免肝脏快速代谢药物,绕过血脑屏障 (BBB) 的药物排斥,并最大限度地减少需要用药物充斥整个体循环以将足够高的药物浓度输送到脑病变的需要。13,14 然而,目前仍不清楚 POH/NEO100 的鼻腔内给药途径是否确实能够实现其关键目标,即使药物能够到达其预期的脑内肿瘤目标。这种确认至关重要,因为它将为以下模型提供急需的支持:鼻腔内 NEO100 是一种可行、更安全且可能更好的治疗脑癌患者的方法。在以下报告中,我们介绍了一例复发性 IV 级 IDH 突变型胶质瘤患者的病例,该患者接受鼻内 NEO100 治疗超过 3 年,并取得了良好的效果,并且再次手术使我们能够在 NEO100 给药后获得肿瘤组织,从而能够在肿瘤内检测 POH 及其代谢物 PA。
摘要:几十年来,鼻腔给药一直用于治疗局部作用疾病。鼻子也是全身循环和中枢神经系统 (CNS) 的门户。在 SARS-CoV2 时代,用于接种疫苗和预防呼吸道疾病的鼻腔喷雾剂的开发正在增加。随着鼻腔给药应用数量的不断增长,鼻腔靶向区域沉积的作用已成为鼻腔药物开发的一个因素。鼻腔模型等体外工具有助于促进配方和产品开发。鼻腔沉积已被证明与药代动力学结果有关。了解复杂的鼻腔解剖结构和个体间差异可以更好地了解药物的沉积位置。鼻腔模型是人类鼻腔的复制品,已从尸体模型演变为复杂的 3D 打印复制品。它们可以分割成感兴趣的区域以量化沉积,并且已经使用不同的技术来量化沉积。将鼻腔模型程序纳入开发中有助于区分配方或物理形式,例如鼻腔粉末和液体。鼻腔模型还可以帮助制定患者使用说明,以确保药物沉积在目标沉积部位。但是,无论使用哪种技术,都应验证这种体外工具,以确保结果反映体内情况。计算机模拟、CFD 模拟或其他新发展在未来可能通过适当的验证,为当前的建模提供更多方法,尽管鼻腔解剖结构的复杂性和广泛变异性仍将是一个挑战。尽管如此,鼻腔解剖模型将成为提高对鼻腔药物输送理解的有效工具。
疫苗是一种生物制剂,可引发对来自引起传染病的病原体的特定抗原的免疫反应 [1]。疫苗被认为是上个世纪最伟大的公共卫生成就之一,其作用是触发先天免疫反应,然后触发抗原特异性适应性免疫反应,类似于正常感染的机制 [2]。疫苗有多种形式,包括活性疫苗、灭活疫苗、结合疫苗、成分疫苗和重组疫苗 [3]。鼻腔疫苗就是这样一种疫苗,其给药方式作为注射的可行替代方案越来越受欢迎 [4]。口服和肌肉注射疫苗一直被认为是最佳替代方案,但鼻腔途径具有许多优势,包括给药方便以及粘膜和全身免疫的发展 [5]。无针疫苗给药将有助于大规模疫苗接种,使其更容易和更快地给药,同时提高保护和执行力,降低成本,并减少与疫苗接种相关的不适 [6]。鼻腔疫苗接种比大多数疫苗接种有许多优势
需要新的有效治疗策略来治疗脑神经退行性疾病并改善阿尔茨海默病 (AD)、帕金森病 (PD)、亨廷顿病 (HD)、肌萎缩侧索硬化症 (ALS) 以及其他脑部疾病患者的生活质量。目前尚无有效的治疗选择;神经退行性疾病 (ND) 的现有疗法只能暂时改善少数患者的认知症状。此外,尽管临床前和 I-II 期临床试验很有希望,但大多数基于淀粉样蛋白的 III 期临床试验最近在 AD 中失败,这进一步表明需要更好地了解疾病的早期机制以及更有效的给药途径。事实上,除了常见的病理事件和分子底物外,这些疾病中的每一种都会优先影响特定神经回路中确定的神经元亚群(选择性神经元脆弱性),从而导致典型的与年龄相关的临床特征。从这个角度来看,成功发现药物的关键是对潜在的新分子靶点进行可靠且可重复的生物学验证,同时建立协议/工具,以便高效、有针对性地将药物输送到特定的目标区域。在这里,我们提出并讨论聚焦超声辅助给药作为一种特定且新颖的技术方法,以实现目标区域药物的最佳浓度。我们将重点关注通过鼻腔途径结合 FUS 将药物输送到大脑,这是一种有希望的方法,可实现神经保护并挽救几种 ND 的认知衰退。
被认为,鼻 - 脑递送需要配方递送到鼻腔的嗅觉区域[1]。多个设备能够将药物制剂深入到该区域,例如Optinose®,ImpelNeuropharma®和KurveTechnology®[2,3,4]。它们比传统的鼻喷雾显示出更多的渗透性递送,这被认为对嗅觉递送不太可行。商业鼻腔PMDI产品(带有短鼻孔和相对狭窄的喷嘴)对于鼻子到脑部药物的递送也不太可行[5,6]。
1梅斯,美国农业部ARS,纽约州格林波特,纽约州11944,美国; elizabeth.ramirez@usda.gov(E.R.-M。); ediane.silva@usda.gov(E.S.); elizabeth.vuono@usda.gov(e.v.); ayushi.rai@usda.gov(a.r.); sarah.pruitt@usda.gov(S.P.); nallely.espinoza@usda.gov(N.E。); lauro.velazquez@usda.gov(L.V.-S.)2堪萨斯州立大学解剖学和生理学系,曼哈顿,肯塔基州66506,美国3美国病理学和人口医学系,密西西比州立大学,P.O。Box 6100,Starkville,MS 39762,美国4 Oak Ridge科学与教育研究所(Orise),Oak Ridge,田纳西州田纳西州37830,美国5农业研究服务,美国贝尔茨维尔,美国马里兰州贝尔茨维尔,美国马里兰州20705年; cyril.gay@usda.gov *通信:manuel.borca@usda.gov(m.v.b); douglas.gladue@usda.gov(d.p.g. );电话。 : +631-323-3131(M.V.B. ); +631-323-3035(D.P.G.)Box 6100,Starkville,MS 39762,美国4 Oak Ridge科学与教育研究所(Orise),Oak Ridge,田纳西州田纳西州37830,美国5农业研究服务,美国贝尔茨维尔,美国马里兰州贝尔茨维尔,美国马里兰州20705年; cyril.gay@usda.gov *通信:manuel.borca@usda.gov(m.v.b); douglas.gladue@usda.gov(d.p.g.);电话。: +631-323-3131(M.V.B.); +631-323-3035(D.P.G.)
1. 正确识别啮齿动物,并通过诱导室(用于异氟烷)或钟罩(用于甲氧氟烷)用蒸气麻醉诱导麻醉 (**) 2. 麻醉后,检查动物是否处于适当的麻醉深度,然后从麻醉输送装置中收集动物并将其放置在能够轻轻抑制头部的位置。当适当麻醉时,啮齿动物已失去翻正反射和缩腿反射。 3. 将移液器尖端的末端放在啮齿动物的鼻孔附近 4. 缓慢推动柱塞,在移液器尖端形成小液滴 5. 将液滴放在啮齿动物的鼻孔附近,让啮齿动物吸入溶液 6. 重复上述步骤以清除剩余体积,每吸入一滴,交替换一个鼻孔
与年龄有关的认知和社会情感功能以及相关大脑区域的差异可能会降低对不信任线索的敏感度,从而影响与信任相关的决策和信任行为。这项研究考察了不同年龄组在信任游戏中的大脑活动和行为差异。在这个游戏中,参与者在半数试验后收到“违背信任”的反馈。反馈表明,对同伴的金钱投资只有 50% 获得了回报。该研究还探讨了鼻内催产素对衰老过程中信任相关决策的影响,基于催产素对负面社会刺激和信任感知的调节作用的暗示。47 名年轻参与者和 46 名老年参与者在参与信任游戏之前,以随机、双盲、受试者间程序自行注射鼻内催产素或安慰剂,同时进行功能性磁共振成像 (fMRI)。较年轻的参与者在得到信任破裂反馈后对游戏伙伴的投入较少,而较年长的参与者在得到信任破裂反馈后,投入没有显著差异。催产素不会调节行为效应。然而,在得到信任破裂反馈后,催产素组的较年长的参与者左侧颞上回的活动较少。相比之下,安慰剂组的较年长的参与者在得到信任破裂反馈后左侧颞上回的活动较多。这一发现可能反映了老年人对不信任线索的反应性降低。此外,催产素对老年人左侧颞上回活动的调节作用支持了这种神经肽在衰老神经过程中的年龄差异作用,包括在与信任相关的决策过程中。
• LAV MV-012-968 经过合理设计,可在不影响免疫原性的情况下减弱 RSV • MV-012-968 具有高度减毒的复制表型,并在棉鼠模型中提供针对 wt RSV 攻击的保护 • MV-012-968 在棉鼠中具有免疫原性,引发与 wt RSV 相当的血清 nAb 反应并诱导与保护相关的粘膜 IgA • MV-012-968 在健康的“血清低”成人中耐受性良好,没有严重或严重的不良事件,并且接种后不良事件很少,即使出现,也是轻微和短暂的 • 成人接种 MV-012-968 后第 56 天内未恢复任何传染性疫苗病毒 • 在接受 10 6 PFU 后,大多数成人疫苗接种者中检测到的 RSV preF 特异性鼻 IgA 比基线增加≥2 倍接种疫苗后第 14 天 • MV-012-968 已进入对血清阳性儿童的评估阶段
摘要:鼻内 (IN) 给药是一种发展迅速的治疗方法,在治疗中枢神经系统 (CNS) 疾病方面具有巨大潜力。此外,体内成像正成为治疗评估的重要组成部分,无论是在人类临床上还是在动物身上。鼻内给药是一种替代全身给药的成像方法,它利用鼻粘膜嗅觉/三叉神经上皮和大脑之间的直接解剖通路。已有几种药物获准用于鼻内给药,而其他药物正在开发和测试中。为了更好地了解哪些成像方式被用于评估治疗的鼻内给药,我们使用关键词“鼻内给药”和“成像”进行了文献搜索,并在当前的综述中总结了这些发现。虽然本综述并不试图做到面面俱到,但我们打算通过提供的示例全面展示可用于评估鼻内给药的成像工具,重点介绍鼻到脑的给药途径。人类和动物体内成像的例子包括磁共振成像 (MRI)、正电子发射断层扫描 (PET)、单光子发射计算机断层扫描 (SPECT)、伽马闪烁扫描和计算机断层扫描 (CT)。此外,一些体内光学成像模式,包括生物发光和荧光,在动物实验测试中得到了更多的应用。在这篇评论中,我们介绍了每种成像模式及其使用方式,并概述了其优缺点,特别是在向大脑输送治疗剂的背景下。