摘要背景:利用最近开发的 tRNA 腺苷脱氨酶 (TadA8e 和 TadA9) 改造的高活性腺嘌呤碱基编辑器 (ABE) 表现出强大的碱基编辑活性,但引发了人们对脱靶效应的担忧。结果:在本研究中,我们对 ABE8e 和 ABE9 诱导的水稻 DNA 和 RNA 突变进行了全面评估。对用四种 ABE(包括 SpCas9n-TadA8e、SpCas9n-TadA9、SpCas9n-NG-TadA8e 和 SpCas9n-NG-TadA9)转化的植物进行全基因组测序分析表明,含有 TadA9 的 ABE 导致更多数量的脱靶 A 到 G (A>G) 单核苷酸变体 (SNV),而含有 CRISPR/SpCas9n-NG 的 ABE 导致水稻基因组中脱靶 SNV 总数更高。对携带 ABE 的 T-DNA 的分析表明,在 T-DNA 整合到植物基因组之前和/或之后可以引入靶向突变,在 ABE 整合到基因组之后会形成更多的脱靶 A>G SNV。此外,我们在 ABE 表达高的植物中检测到脱靶 A>G RNA 突变,但在 ABE 表达低的植物中未检测到。脱靶 A>G RNA 突变倾向于聚集,而脱靶 A>G DNA 突变很少聚集。结论:我们的研究结果表明 Cas 蛋白、TadA 变体、ABE 的时间表达和 ABE 的表达水平对水稻中的 ABE 特异性有影响,这为了解 ABE 的特异性提供了见解,并提出了除改造 TadA 变体之外增加 ABE 特异性的其他方法。
为什么我们需要颠换碱基编辑器? CRISPR-Cas9 系统彻底改变了基因组工程领域。该系统通过在基因组中生成小的插入/缺失,可高效地引起靶向敲除。从一个核苷酸到另一个核苷酸的精确修改需要充足的供体模板供应和同源定向修复 (HDR) 途径的诱导 [1]。胞嘧啶碱基编辑器 (CBE) 和腺嘌呤碱基编辑器 (ABE) 的发明使我们能够在没有供体模板的情况下在 DNA 或 RNA 中进行靶向 C 到 T 和 A 到 G 的转换 [2-5]。CBE 和 ABE 都已广泛应用于各种生物体,以创建或纠正点突变,用于不同的应用 [5、6]。然而,CBE 和 ABE 仅催化碱基转换(嘌呤到嘌呤或嘧啶到嘧啶),并且只能用于实现 12 种可能的碱基替换中的 4 种。尽管如此,许多生物、治疗和作物改良应用都需要
工程)(ABES技术研究所)(ABES技术研究所)(ABES技术研究所)摘要:电子电动机的关键要素,可确保汽车电动机的有效操作和耐用性是热管理机器。可以为机器充电以维护电池,电力电子设备和电动机的理想工作温度范围。由精心设计的热管理设备创建了一个强大的热环境,该设备可以提高常规汽车的效率,延长电池寿命并增加车辆的品种。本文将总结各种热控制设备添加剂,其目的以及为数字电机创建有效的热管理系统的困难。本文还将介绍创建热控制设备以及行业未来过程的最新发展。关键字:电池热管理,电子车辆,ESP32。r eceived 2023年5月8日; r于2023年5月17日; 2023年5月19日的ceccept©作者2023。在www.questjournals.org
胞嘧啶碱基编辑器和腺嘌呤碱基编辑器(ABE)可以可预测地校正点突变,并且独立于CAS9诱导的双链DNA断裂(这会导致实质性的indel形成)和同源性指导的修复(通常会导致较低的编辑效率)。在此,我们在成年小鼠中表明,在RPE65基因中,态慢性病毒的下视网膜下注射表达ABE和单一指导RNA,靶向从RPE65基因进行的无义突变纠正了致病性突变,可纠正效率高达29%的效率,并在indel和oft oft oftarget的突变中均具有最小的效率,但均具有29%的效率,并且是不可或缺的效率。主题。ABE处理的小鼠显示了恢复的RPE65表达和类视黄素异构酶活性,以及视网膜和视觉功能的接近正常水平。我们的发现激发了对
胞嘧啶碱基编辑器和腺嘌呤碱基编辑器 (ABE) 可以可预测地纠正点突变,并且不受 Cas9 诱导的双链 DNA 断裂(导致大量插入/缺失形成)和同源定向修复(通常导致低编辑效率)的影响。本文,我们在成年小鼠中表明,视网膜下注射表达 ABE 的慢病毒和针对 Rpe65 基因中新生无义突变的单向导 RNA 可以纠正致病突变,效率高达 29%,并且插入/缺失和脱靶突变的形成最少,尽管没有典型的 NGG 序列作为原间隔区相邻基序。经 ABE 处理的小鼠显示恢复的 RPE65 表达和类视黄酸异构酶活性,以及接近正常水平的视网膜和视觉功能。我们的发现促使进一步测试 ABE 以用于
碱基编辑器是一种基因组编辑工具,可通过对 DNA 中的核碱基进行化学修饰来实现位点特异性碱基转换。腺嘌呤碱基编辑器 (ABE) 利用腺苷脱氨酶将目标腺苷修饰为肌苷中间体,从而将 DNA 中的 A•T 转换为 G•C 碱基对。由于缺乏可以修饰 DNA 的天然腺苷脱氨酶,ABE 是从 tRNA 脱氨酶 TadA 进化而来的。之前利用由野生型 (wt) TadA 组成的 ABE 进行的实验未显示对 DNA 的可检测活性,因此需要定向进化以使该酶能够接受 DNA 作为底物。在这里,我们表明 wtTadA 可以在细菌和哺乳动物细胞中的 DNA 中进行碱基编辑,对 TAC 的序列基序有严格的要求。我们利用这一发现优化了报告基因检测,以检测低至 0.01% 的碱基编辑水平。最后,我们将该分析与完整 ABE:DNA 复合物的分子动力学模拟结合使用,以更好地了解突变 TadA 变体的序列识别如何随着它们积累突变而变化,从而更好地编辑 DNA 底物。
碱基编辑器是一种基因组编辑工具,可通过对 DNA 中的核碱基进行化学修饰来实现位点特异性碱基转换。腺嘌呤碱基编辑器 (ABE) 利用腺苷脱氨酶将目标腺苷修饰为肌苷中间体,从而将 DNA 中的 A•T 转换为 G•C 碱基对。由于缺乏可以修饰 DNA 的天然腺苷脱氨酶,ABE 是从 tRNA 脱氨酶 TadA 进化而来的。之前利用由野生型 (wt) TadA 组成的 ABE 进行的实验未显示对 DNA 的可检测活性,因此需要定向进化以使该酶能够接受 DNA 作为底物。在这里,我们表明 wtTadA 可以在细菌和哺乳动物细胞中的 DNA 中进行碱基编辑,对 TAC 的序列基序有严格的要求。我们利用这一发现优化了报告基因检测,以检测低至 0.01% 的碱基编辑水平。最后,我们将该分析与完整 ABE:DNA 复合物的分子动力学模拟结合使用,以更好地了解突变 TadA 变体的序列识别如何随着它们积累突变而变化,从而更好地编辑 DNA 底物。
摘要:酶以极高的选择性催化化学转化。通过定向进化,我们可以重新编程酶以应用于生物催化和医学。在第一部分中,我将讨论我的工作,即发现、表征和设计卤化未活化 Csp3—H 键的 FeII/α-酮戊二酸依赖性酶。我解决了一种新型赖氨酸卤化酶 (BesD) 的厌氧晶体结构,发现了能够形成九种新氯化氨基酸的同源物,并开发了酶级联以产生氯化杂环、二胺、酮酸和肽。通过结构研究和高通量筛选,我研究了该酶家族中区域选择性和催化选择性的机制基础,并利用由此获得的见解来设计羟化酶以进行卤化,其活性和选择性与天然卤化酶相当。在第二个故事中,我通过定向进化开发了新型胞嘧啶碱基编辑器 (CBE)。碱基编辑器由可编程的 DNA 结合蛋白(如催化受损的 Cas9)组成,与脱氨酶融合,可实现基因组中靶位点的精确核苷酸变化。将 C•G 碱基对转化为 T•A 的 CBE 通常比其腺嘌呤碱基编辑器 (ABE) 更大,并且具有更多不良的脱靶编辑。为了开发一类保留 ABE 有利特性的新型 CBE,我使用连续蛋白质进化来进化 ABE,以便在治疗相关位点和细胞类型内进行高效的胞嘧啶碱基编辑。这些新进化的碱基编辑器克服了现有 CBE 的几个局限性,并展示了蛋白质进化在应对生物技术挑战方面的力量。
糖原储存疾病IA型(GSDIA)是由G6PC基因突变引起的常染色体隐性疾病,它破坏了葡萄糖稳态中的关键酶G6Pase 1。GSDIA患者患有低血糖,肝脏和肾脏的糖原和脂肪的积累,导致肝肿大和肾肿大。无法治愈。急性致命的低血糖,但肾脏疾病和肝细胞癌的长期并发症并未解决。与GSDIA相关的两个最普遍的G6PC突变是R83C和Q347X,均包含单个G> A的过渡突变。腺嘌呤碱基编辑器(ABES)可以使用基因组DNA中A•T到G•C的编程转换,并且原理可以用来精确纠正这些突变。在这里,我们设计了新颖的腺嘌呤基础编辑器(ABE)变体,以验证GSD1A的临床模型。
系统已被探索作为有效的选择剂来消除未编辑的细胞,从而大大简化了细菌中的基因操作过程。9尽管基于 CRISPR/Cas 的基因组编辑方法简单且高效,但它们仍然依赖于细菌中的 HR 来实现精确的基因操作,因此难以在某些缺乏强大 HR 系统的细菌(如结核分枝杆菌)中建立。最近,脱氨酶介导的碱基编辑系统的发展为生物学中的精确基因操作提供了新策略。10 – 12碱基编辑系统使用脱氨反应和随后的 DNA 复制过程直接转换目标碱基,而不是前面提到的基于 CRISPR/Cas 的基因组编辑方法中所利用的 HR。已经建立了两种主要类型的碱基编辑系统:胞嘧啶碱基编辑器(CBE)10,11 和腺嘌呤碱基编辑器(ABE)。 12,13 CBE 已广泛用于各种生物体(包括真核生物 10,11,14 - 17 和一些细菌物种 17 - 22)中的可编程胞嘧啶到胸腺嘧啶的转化,而 ABE 主要在真核生物中建立,例如哺乳动物细胞 12,23 和植物 24,25,用于精确的腺嘌呤到鸟嘌呤的转化。最近,在链霉菌中开发了一种名为 CRISPR-aBEST 的 ABE 系统。13 此外,还开发了可编程的腺苷到肌苷和胞苷到尿苷的 RNA 编辑器。26,27