脑电图(EEG)越来越多地用于重复和延长应用,例如神经反馈,大脑计算机接口和长期间歇性监测。干接触电极可以快速自我应用。现有干电极的常见缺点是长时间应用过程中的舒适性有限。我们提出了一种新型的干弓电极。五个半圆形拱门在公共底板上排列。电极底物材料是添加剂制造产生的浮动热塑性聚氨酯(TPU)。使用新型的表面官能化方法,通过电镀层来应用银/氯化银(AG/AGCL)的化学涂层。拱形电极是根据机械耐用性,电化学稳定性,体内适用性和信号特性来制造和验证的。我们将干弓电极的结果与干销和常规的基于凝胶的电极进行比较。在10名男性和5名女性志愿者中获得了21次通道脑电图记录。测试包括静止状态脑电图,α活性和视觉诱发潜力。佩戴舒适感直接在应用后以及30分钟和60分钟的穿着后对受试者进行了评分。我们的结果表明,新型的镀金技术提供了具有良好的导电性和电化学稳定涂层的功能,并具有重复性应变和弯曲测试。弓电极的信号质量与销形干电极相当。弓电极设置的平均通道可靠性为91.9±9.5%。在识别和排除不良通道后,基于凝胶,干销和拱形电极的信号特性没有明显差异。与引脚形电极和启用持续时间超过60分钟的应用相比,舒适度得到了改善。拱形电极需要将电极的单独适应志愿者的方向和发型。21个通道帽的初始制备时间从销球电极的平均5分钟增加到拱电极的15分钟,基于凝胶的电极的平均电极和22分钟。但是,重新应用
电沉积是制备合金的重要方法之一。利用电沉积合成合金的方法引起了广泛关注,因为它能够在室温下在金属基材上制备合金薄膜。到目前为止,含有六价铬(Cr 6 +)离子的电解槽已用于金属铬的电沉积。然而,众所周知,Cr 6 + 离子会引起有害的环境污染[4,5]。在欧盟,WEEE/RoHS(废弃电子电气设备/限制在电子电气设备中使用某些有害物质)指令限制使用Cr 6 + 离子[6]。因此,作为一种替代工艺,许多研究人员提出了从含三价铬(Cr 3 +)离子的电解槽中电沉积金属铬合金(例如 Co e Cr 和 Ni e Cr 合金 [7]、Fe e Cr 合金 [8] 和 Fe e Cr e Ni 合金 [9])。然而,众所周知,电沉积的电流效率受到很大限制,因为 Cr/Cr 3 + 的标准电极电位为 0.937 V(vs. Ag/AgCl/饱和 KCl),远不如铁族金属(例如 Ni/Ni 2 +、Co/Co 2 + 和 Fe/Fe 2 +)的电位高 [10]。在从水溶液中电沉积次贵金属的过程中,随着电流密度的增加,阴极附近的pH值升高[11]。pH值升高的原因是高电流密度下氢气析出速率高,导致阴极附近的H+离子消耗速率高。因此,在简单的水溶液中,Cr3+离子在高电流密度下会与阴极附近的六个水分子形成复合物[Cr(H2O)6]3+。具体而言,这些[Cr(H2O)6]3+离子会在酸性pH区(pH > 4.5)通过羟桥反应形成羟基桥接胶体聚合物[12,13]。阴极附近的这种胶体聚合物会抑制金属铬的电沉积。因此,通常在水溶液中加入甘氨酸、尿素或 N,N-二甲基甲酰胺 (DMF) 等络合剂来抑制 [Cr(H 2 O) 6 ] 3 + 离子的形成。在这些络合剂中,DMF 是众所周知的在金属电沉积过程中减少氢析出的有效络合剂 [14]。之前有几种
标题:使用耳脑电图 (cEEGrids) 记录大脑活动 作者及所属机构:Daniel Hölle、Martin G. Bleichner 日常生活神经生理学组,德国奥尔登堡大学心理学系 视频:https://uol.de/en/psychology/neurophysiology/resources/ceegrid-video-tutorial 摘要:cEEGrid(耳脑电图)可以长时间记录实验室内外的大脑活动。在此协议中,我们描述了如何设置和使用 cEEGrids 进行记录。 摘要:cEEGrid(耳脑电图;耳脑电图)是一种不显眼且舒适的电极阵列,固定在耳朵周围。它适合长时间研究实验室外的大脑活动。先前的研究表明,cEEGrid 可用于研究实验室内外的各种认知过程,甚至可以研究一整天。要记录高质量的耳部脑电图数据,必须进行精心准备。在此协议中,我们解释了成功使用 cEEGrids 进行实验所需的步骤:首先,我们展示了如何在记录之前测试 cEEGrid 的功能。其次,我们描述了如何准备参与者并安装 cEEGrid,这是记录高质量数据的最重要步骤。第三,我们概述了如何将 cEEGrids 连接到放大器以及如何检查信号质量。在此协议中,我们提供了最佳实践建议和技巧,使 cEEGrid 记录更容易。如果研究人员遵循此协议,他们就完全有能力在实验室内外使用 cEEGrid 进行实验。简介:使用移动耳脑电图 (EEG),可以在日常生活中记录大脑活动,并获得对实验室以外的神经处理的新见解 1 。为了适合日常生活,移动耳脑电图系统应该是透明的:不引人注目、易于使用、运动耐受性好,即使佩戴几个小时也舒适 2 。 cEEGrid 是一种 C 形耳脑电图系统,旨在满足这些要求,以最大限度地减少对自然行为的干扰。cEEGrid 由十个印在柔性印刷材料上的 Ag/AgCl 电极组成 3 。结合微型移动放大器和用于数据采集的智能手机 4、5,cEEGrid 可用于长时间收集耳脑电图 1 。有许多神经过程可以通过耳朵周围的电极记录 6、7 。实验室进行的几项研究表明 cEEGrid 在研究这些过程方面的潜力。它已成功用于听觉注意力解码,准确度高于偶然水平 8-12 。Segaert 及其同事 13 使用 cEEGrids 量化
简介:脑机接口 (BCI) 尚未被主流采用作为控制范例,因为大多数 BCI 系统都很笨重、难以设置,并且在移动环境中通常表现不够好,无法取代现有的输入模式。然而,BCI 可能有望成为多模式系统的一部分,当用户的手不空闲和/或无法发出语音命令时,该系统可以增强交互,这通常是高度移动应用领域的要求。随着电极功能的最新进展以及移动设备和头戴式显示器处理能力的提高,现在可以在移动设备上实时获取、发送和处理 EEG 信号。这些改进使得构建可穿戴移动 BCI 成为可能,它可以为主流用户和残疾人提供替代的交互方法。本摘要描述了我们正在进行的设计和评估可穿戴移动 BCI 组件的工作中的两项试点研究。材料、方法和结果:在我们的第一项研究中,我们的目标是设计一个 BCI 来检测所有可穿戴组件的 SSVEP。谷歌眼镜 [2] 用于同时向参与者呈现两个闪烁的视觉刺激,频率为 13 Hz 和 17 Hz。我们的 EEG 放大器是一块 OpenBCI 板,我们使用定制的 3D 打印夹子将其夹在参与者的腰带上。我们使用三个电极:枕骨(Oz)作为信号、乳突作为接地、耳垂作为参考,来检测 SSVEP 信号。我们记录了 EEG 数据以供离线分析。在 10 个疗程中,使用图 1 所示的装置,我们可以检测到参与者正在关注两个刺激中的哪一个,对于 13 Hz 的准确率为 76%-84%,对于 17 Hz 的准确率为 67%-72%,对于 1 秒长滑动窗口 SSVEP 的 PSD 振幅谱作为特征,使用对每个刺激单独训练的 10 倍交叉验证 RF 分类器。我们将实验扩展到步行-秒表刺激场景,发现单个刺激 1 秒长滑动窗口 SSVEP 的准确率为 93%。我们第二项研究的目的是确定是否可以用易于制作的定制入耳电极替换头皮电极,该电极改编自 Looney [1] 讨论的耳电极设计。我们使用 eFit s 扫描仪创建了参与者左耳的模型。然后,我们 3D 打印了一个耳机,并放置了 3 个预凝胶的 Ag/AgCl 接地板电极,并用银箔覆盖,使它们接触外耳的耳道壁。将用于比较的入耳电极和 Oz 连接到可穿戴 OpenBCI 系统和距离用户 6 厘米的闪烁的 13Hz LED。如图 2 所示,枕骨区域的峰值 SSVEP 幅度高于耳道,但 SNR 也增加了,因此使用可穿戴 BCI 从耳朵和头皮的检测准确率可达到 80-90%。
本期刊文章的自构建后版本可在Linköping大学机构存储库(DIVA)上获得:https://urn.kb.se/resolve?urn = urn= urn= urnt:se:se:se:se:liu:diva-206387 N.B. N.B.:引用这项工作时,请引用原始出版物。Padinhare Cholakkal,H.,Tu,D.,Fabiano,S。(2024),神经形态感知的有机电化学神经元,自然电子,7(7),525-536。 https://doi.org/10.1038/s41928-024-01200-5