简介:脑机接口 (BCI) 尚未被主流采用作为控制范例,因为大多数 BCI 系统都很笨重、难以设置,并且在移动环境中通常表现不够好,无法取代现有的输入模式。然而,BCI 可能有望成为多模式系统的一部分,当用户的手不空闲和/或无法发出语音命令时,该系统可以增强交互,这通常是高度移动应用领域的要求。随着电极功能的最新进展以及移动设备和头戴式显示器处理能力的提高,现在可以在移动设备上实时获取、发送和处理 EEG 信号。这些改进使得构建可穿戴移动 BCI 成为可能,它可以为主流用户和残疾人提供替代的交互方法。本摘要描述了我们正在进行的设计和评估可穿戴移动 BCI 组件的工作中的两项试点研究。材料、方法和结果:在我们的第一项研究中,我们的目标是设计一个 BCI 来检测所有可穿戴组件的 SSVEP。谷歌眼镜 [2] 用于同时向参与者呈现两个闪烁的视觉刺激,频率为 13 Hz 和 17 Hz。我们的 EEG 放大器是一块 OpenBCI 板,我们使用定制的 3D 打印夹子将其夹在参与者的腰带上。我们使用三个电极:枕骨(Oz)作为信号、乳突作为接地、耳垂作为参考,来检测 SSVEP 信号。我们记录了 EEG 数据以供离线分析。在 10 个疗程中,使用图 1 所示的装置,我们可以检测到参与者正在关注两个刺激中的哪一个,对于 13 Hz 的准确率为 76%-84%,对于 17 Hz 的准确率为 67%-72%,对于 1 秒长滑动窗口 SSVEP 的 PSD 振幅谱作为特征,使用对每个刺激单独训练的 10 倍交叉验证 RF 分类器。我们将实验扩展到步行-秒表刺激场景,发现单个刺激 1 秒长滑动窗口 SSVEP 的准确率为 93%。我们第二项研究的目的是确定是否可以用易于制作的定制入耳电极替换头皮电极,该电极改编自 Looney [1] 讨论的耳电极设计。我们使用 eFit s 扫描仪创建了参与者左耳的模型。然后,我们 3D 打印了一个耳机,并放置了 3 个预凝胶的 Ag/AgCl 接地板电极,并用银箔覆盖,使它们接触外耳的耳道壁。将用于比较的入耳电极和 Oz 连接到可穿戴 OpenBCI 系统和距离用户 6 厘米的闪烁的 13Hz LED。如图 2 所示,枕骨区域的峰值 SSVEP 幅度高于耳道,但 SNR 也增加了,因此使用可穿戴 BCI 从耳朵和头皮的检测准确率可达到 80-90%。
主要关键词