摘要:同轴激光金属沉积(LMD-w)是对已在生产中建立的增材制造工艺的宝贵补充,因为它允许一个与方向无关的工艺,具有高沉积速率和高沉积精度。然而,在工艺开发过程中,缺乏关于调整工艺参数以构建无缺陷部件的知识。因此,在这项工作中,使用铝线 AlMg4,5MnZr 和不锈钢线 AISI 316L 进行了同轴 LMD-w 工艺开发。首先,确定了导致无缺陷工艺的参数组合的边界。工艺参数单位长度能量和速度比之间的比例对于无缺陷工艺至关重要。然后,使用回归分析分析了工艺参数对两种材料的单个珠子高度和宽度的影响。结果表明,线性模型适合描述工艺参数与珠子尺寸之间的相关性。最后,提出了一个与材料无关的公式来计算增材工艺所需的每层高度增量。对于未来的研究,这项工作的结果将有助于使用不同材料的工艺开发。
北美钢铁行业引领创新和环境可持续性 钢铁是现代社会和向可持续未来过渡的重要且不可替代的材料。钢铁行业继续引领新型钢材的革命性开发,为汽车、建筑、机械、包装和能源领域的客户提供服务。我们的行业正在推动可持续建筑施工、能源传输和开发等方面的进步。目前有 3,500 多个钢材等级可供选择,大约 75% 的现代钢材是在过去 20 年内开发的。这些产品有助于减少整个经济的能源消耗和温室气体 (GHG) 排放。在北美,钢铁行业在减少炼钢过程中的能源使用和温室气体排放方面处于世界领先地位。自 1990 年以来,AISI 会员公司每吨产量的能耗降低了 35%,同期温室气体排放强度降低了 37%。除了世界领先的环保性能外,我们生产的钢铁产品还表现出卓越的可持续性性能,可最大限度地减少对环境的影响。从材料生产、使用寿命和报废的整个生命周期来看,钢铁卓越的可持续性性能可最大限度地减少对环境的影响。一个关键的例子是汽车市场,创新对于满足政府更高的燃油效率和温室气体要求至关重要。为了帮助我们的汽车制造商客户满足这些标准,钢铁行业开发了先进的材料和制造技术,从而推出了新的先进高强度钢 (AHSS) 等级——这是汽车制造业增长最快的材料。如今的钢材等级比十年前的钢材强度高出六倍,比市场上最新的铝合金强度高出三到四倍。AHSS 的强度增加使汽车制造商能够继续通过轻量化产品提供重要的性能和安全优势,同时减少其对环境和气候的整体影响。 AISI 的一项同行评议研究表明,使用先进高强度钢 (AHSS) 实现汽车轻量化可立即持续减少温室气体 (GHG) 排放量,而使用铝代替 AHSS 实现同一批车辆的轻量化则会导致温室气体排放量在数十年内大幅增加。钢铁产品 100% 可回收,每年回收的钢铁比纸张、塑料、铝和玻璃的总和还要多。美国钢铁行业回收了来自包装市场的四分之三的钢铁,几乎回收了来自包装市场的 100%
粗晶粒和柱状晶粒结构沿增材制造金属的构建方向外延生长是一种常见现象。因此,成品部件通常表现出明显的各向异性机械性能、延展性降低,因此开裂敏感性高。为了提高增材制造部件的机械性能和可加工性,等轴和细晶粒结构的形成被认为是最有益的。在本研究中,研究了激光丝增材制造过程中通过超声波激发熔池来细化晶粒的潜力。开发了一种超声波系统并将其集成到激光丝沉积机中。AISI 316L 钢用作基材和原料。通过光学显微镜、扫描电子显微镜和电子背散射衍射分析,证实了粗柱状晶粒 (d m- = 284.5 μ m) 转变为细等轴晶粒 (dm = 130.4 μ m),并且典型的 <100> 纤维织构随着振幅的增加而减弱。结果表明,晶粒细化的程度可以通过调节超声振幅来控制。没有观察到树枝状结构的显著变化。超声焊极/熔池直接耦合与激光丝沉积工艺的结合代表了一种开创性的方法和有前途的策略,可用于研究超声对晶粒细化和微观结构调整的影响。
通过增材制造 (AM) 生产的材料与文献极为相关。然而,对于这些材料的疲劳寿命以及 VHCF 模式中主要裂纹的相应起始机制,仍然存在尚未巩固的知识。在通过传统方法生产的材料中观察到的是,疲劳裂纹往往从位于内部或表面下区域的材料固有缺陷处成核。疲劳裂纹演变过程的变化导致在断裂表面形成一种称为“鱼眼”的特征形态。在断裂表面上观察到的另一个普遍现象是在起始点附近形成了一个细颗粒区域 (FGA)。这项工作旨在研究两种不同材料在 VHCF 中的裂纹成核机制:传统钢、DIN 34CrNiMo6 和通过 L-DED 生产的 AISI 316L 不锈钢。超声波测试以 20±0.5 kHz 的频率和 R= -1 进行。获得了 SN 曲线并分析了断裂面,验证了鱼眼和 FGA 的形成。将 FGA 尺寸与经验方程估算的值进行了比较。FGA 和鱼眼尺寸与应力幅值和最大应力强度因子 (SIF) 有关。
执行摘要 目前,商业化的聚光太阳能发电 (CSP) 电厂与普通光伏 (PV) 电厂的区别在于,它们可以储存足够的热能,以便在太阳下山后数小时内发电。CSP 电厂将这种热能以硝酸盐的显热形式储存在大型金属储罐中。工作温度约为 565°C 的热罐需要使用不锈钢 AISI 347H (SS347H) 作为结构材料,而冷罐则可用碳钢制成。目前,欧洲和美国的几家槽式 CSP 电厂正在使用双罐硝酸盐热能存储 (TES),工作温度最高可达 390°C。至少有三家商业运营的塔式 CSP 电厂(西班牙的 Gemasolar、美国内华达州的 Crescent Dunes 和摩洛哥的 Noor III)采用相同的方法,将硝酸盐储存在高达 580°C 的温度下。由于 SS347H 比碳钢贵很多倍,是当今 CSP 电厂成本中的一个重要组成部分,CSP 开发商需要通过降低电厂每个系统的成本来缩小与光伏太阳能电厂的成本差距。重新设计 TES 储罐是降低成本的一个机会。
按日期重新检查电子邮件 您的许可证申请以及计划和规格已审查完毕,并告知您,由于下文所述原因,许可证暂不发放。根据政府法典第 65852.2 条,如果此许可证申请用于附属住宅单元 (ADU) 或小型附属住宅单元 (JADU),则发布此整套意见和申请补救方法说明即构成许可证申请被拒通知。计划和规格的批准并不意味着违反《建筑规范》或其他地方法令或州法律的任何部分。注意:括号 ( ) 中的数字指的是 2023 年版洛杉矶县建筑规范、现有建筑规范 (E)、住宅规范 (R)、表格 (T)、管道规范 (PC)、机械规范 (MC)、电气规范 (EC)、建筑规范手册 (BCM)、2018 年国家设计规范 (NDS)、2021 年抗风抗震特殊设计规定 (SDPWS)、2016 年建筑物和其他结构最低设计荷载(包括补充第 1 号 (ASCE7))、ACI 318-19、TMS 402-2016、TMS 602-2016、AISC 360-16、AISC 341-16、AISI S100-16/S2-20 的部分内容。如需了解洛杉矶县建筑规范修正案和 BCM,请访问 www.dpw.lacounty.gov/bsd/content
摘要:采用激光定向能量沉积 (L-DED) 技术制备了接近全密度且无裂纹的 AISI H13 热作工具钢。研究了两种不同的热处理方案,即从成品 (AB) 状态直接回火 (ABT) 和回火前系统化和淬火 (QT),并报告了它们对 L-DED H13 的微观结构、硬度、断裂韧性 (K app ) 和回火抗力的影响。为此,确定了最佳奥氏体化制度,并制作了回火曲线。在相似的硬度水平 (500 HV1) 下,QT 部件的 K app (89 MPa √ m) 高于 ABT (70 MPa √ m)。然而,这两个部件获得的断裂韧性值与锻造 H13 相当。考虑到高温奥氏体化过程中发生的微观结构均质化和再结晶,讨论了 QT 对应部件中稍大的 K app。 ABT 材料在 600 ◦ C 下的回火抗力与 QT 材料相比略有改善,但对于更长的保温时间(长达 40 小时)和更高的温度(650 ◦ C),ABT 表现出优异的耐热软化性能,这是由于其马氏体亚结构(即块尺寸)更细小、二次碳化物尺寸更细小以及二次 V(C,N)碳化物的体积分数更大。
提出了针对定向能量沉积 - ARC或线弧的结构行为的实验性研究(分别为DED-ARC AM和WAAM)钢钢双圈剪切螺栓连接。首先通过拉伸优惠券测试确定材料的机械性能,其标称屈服应力为420 MPa。六十个连接样品,具有两个不同的名义厚度和两个打印层方向的样本,然后测试为故障。通过3D激光扫描确定测试样品的几何形状,而使用数字图像相关性测试期间测量变形和应变场。观察到的故障模式包括剪切,净张力张力,轴承和终端分割,而首次确定了新的剪切和净截面张力的混合模式。将测试结果与当前设计规范的预测进行了比较,即AISI S100和AS/NZS 4600用于冷形钢和AISC 360和Eurocode 3用于结构钢,以评估其对WAAM元素的适用性。总体而言,测试标本的结构行为遵循预期的趋势,并且根据当前设计规范确定的预测电阻通常是合理的。但是,有许多例外,强调了对新设计规定的需求以及适当的安全因素,这些需求是这种形式的制造形式。
摘要:在增材制造(AM)中,技术和处理参数是确定给定材料样品特征的关键要素。为了区分这些变量的效果,我们使用了具有不同AM技术的相同AISI 316L不锈钢粉末。使用的技术是金属AM中最相关的技术,即具有高功率二极管激光器的直接激光沉积(DLD)和使用新颖的CO 2激光器,具有高功率二极管激光器和选择性激光熔点(SLM),这是一种尚未与此材料一起报道的新技术。所有样品的微观结构均显示出奥氏体和铁素体相,与两个SLM相比,它们对DLD技术更粗糙。纤维激光SLM样品的硬度最大,但其弯曲强度较低。在带有CO 2激光片的SLM中,孔隙率和缺乏熔化会减少断裂应变,但在某些堆积策略下,强度大于激光SLM样品中的强度。使用DLD制造的标本显示出比其余的更高的断裂应变,同时保持高强度值。在所有情况下,都观察到裂纹表面并确定断裂机制。使用归一化参数方法比较了处理条件,该方法也被用来解释观察到的微观结构。
钢 (SS) 与 AISI 400 系列马氏体不锈钢 (参考文献 10、11) 相似,但它仍然非常出色,并且可以采用任何常见的电弧、电阻或高能量密度焊接工艺进行焊接。无需预热 (参考文献 12-I 6) 或 PWHT 来防止开裂或恢复延展性 (参考文献 10、1 [ ])。在这种材料中,由于微观结构中存在残余奥氏体 (参考文献 12),紧邻熔合区的热影响区 (HAZ) 可以通过焊接加热和冷却循环 (参考文献 12、15、17) 有效地退火或软化。因此,这种材料可以在时效条件下焊接而不会产生裂纹(参考文献 11、15),因为焊接热量会导致 HAZ 局部软化(参考文献 12)。此外,在固溶处理 (ST) 条件下焊接不会导致固溶处理结构出现明显的沉淀硬化,因为焊接期间的加热时间太短(参考文献 12、14、15)。对于焊接 17-4 PH SS,通常首选匹配成分或低强度高延展性不锈钢的填充金属和电极(参考文献 1、11、15、16)。用匹配填充金属制成的焊件可以时效到与母材相当的强度水平,并用于生产高强度焊件。但是,如果允许较低的强度水平,则可以使用奥氏体不锈钢焊接金属。