地球科学中标记的培训数据的可用性反映在监督分析中使用的训练数据数量中。除了上述10年的分析外,我们还从2018 - 2019年的AGU论文中手动提取了其他相关信息,包括应用的ML算法,标记的培训数据的数量和数据类型(模型输出,卫星,原位,原位,重新分析等)。在我们调查的论文中,大多数ML算法是使用数百个标记样品培训的。但是,对于使用模型输出或大型,已建立的数据集的某些应用程序,培训数据的数量范围更大。缺乏训练数据在生物学科学和陆地水圈(水文)研究中尤其急切。
机器学习的快速增长已大大改变了各种行业,包括健康,金融和自治系统。了解这个动态领域的趋势对于指导研究,分配资源和预期未来的发展至关重要。本研究通过研究科学文章的标题和摘要来解决2014年至2024年机器学习研究中进行全面趋势分析的必要性。通过提取描述性限定词,我们将文章分类为特定的主题,并随着时间的推移分析了它们的演变。我们的方法包括对预选赛的详细研究,对这些资格符与关联规则的共同存在的研究,文章的主题分类以及每个主题的趋势预测。关键发现突出了“人工神经网络和深度学习”等主题的持续突出以及“生成模型”等新领域的出现。分析显示研究重点的重大转变,并确定了一致的趋势,为该领域的发展提供了宝贵的见解。这项研究证明了文本挖掘技术在跟踪和预测研究趋势中的有效性。
回归是预测连续价值的过程。我们可以使用回归方法来预测使用其他一些变量的连续值,例如CAR模型的CO2发射。例如,让我们假设我们可以访问包含与来自不同汽车的CO2排放相关的数据的数据集。数据集包含诸如汽车发动机尺寸,气缸数,燃油消耗量和来自各种汽车型号的CO2排放之类的属性。现在,我们有兴趣估计其生产后新车模型的近似CO2发射。使用机器学习回归模型这是可能的。在回归中,有两种类型的变量:一个因变量和一个或多个自变量。因变量是我们研究和尝试预测的“状态”,“目标”或“最终目标”,而自变量(也称为解释变量)是这些“状态”的“原因”。自变量通常通过x显示,并且因变量用y表示。回归模型将y或因变量与x的函数相关联,即自变量。回归的关键点是因变量值应该是连续的,而不是离散值。但是,可以在分类或连续测量量表上测量自变量或变量。回归的类型:基本上,回归模型有两种类型:简单回归和多重回归。简单回归是当使用一个自变量来估计因变量时。它可以在非线性上是线性的。例如,使用“汽车的发动机尺寸”预测CO2排放。回归的线性基于自变量和因变量之间关系的性质。存在多个自变量时,该过程称为多个线性回归。例如,使用变量“汽车的发动机尺寸”和“汽车中存在的气缸数”来预测CO2排放。再次取决于因变量和自变量之间的关系,多个线性回归可以是线性或非线性回归。
为人工智能中学习的基本学习类型提供全面的理解,并在监督和无监督的学习之间划定。本章旨在向读者介绍这些学习范式的核心概念和方法,包括分类概述,并解释不同数据集的重要性,例如培训,测试和验证在AI模型的开发中。此外,本章将解决模型培训中的共同挑战,尤其是过度拟合和不足,并讨论减轻这些问题的策略。目标是为读者提供有效应用这些概念在AI的各种应用中的知识。
个性化教育通过人工智能和数据分析的整合而彻底改变了革命,从而创造了适合个人学生需求的自适应学习体验。这些技术利用复杂的学习分析引擎,AI决策模型,自适应内容输送系统和实时反馈机制来处理大量的学习者数据。本文涵盖了各种AI方法 - 包括用于学生建模的机器学习,用于内容分析的自然语言处理以及用于途径优化的强化学习 - 同时应对数据互操作性,算法透明度以及平衡自动化等技术挑战。诸如可汗学院的精通学习系统和卡内基学习的认知导师等成功实施的案例研究表现出具体的好处,而多模式学习分析,边缘计算和知识表示的新兴技术有望进一步提高教育效率。
这个科学启动项目涉及使用机器学习(ML)方法对蒙特卡洛(MC)数据集进行分析。该数据集由实验性Hadronic Physics Group(Hadrex)与Alice实验直接合作,该实验与大型强子对撞机(LHC)直接合作。该研究专门针对多震颤的重子(例如ξ⁻,ξ⁺等)以及随后的衰减,这是一个称为“级联衰变”的过程。主要目的是使用生成机器学习模型通过其次要衰减来重建这些粒子。通过综合与实验观察相吻合的现实数据,该项目旨在优化常规的高能物理学分析并增强数据分析算法,以搜索稀有可观察物。为了应对这一挑战,采用了条件表格生成对抗网络(CTGAN)模型。结果表明,CTGAN在复制可变分布的同时有效地保留了原始数据的物理和内在相关性,从而增强了其改善高能物理学数据驱动研究的潜力。